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A COMPARISON OF FOUR- AND FIVE-POINT DIFFERENCE
APPROXIMATIONS FOR STABILIZING THE ONE-DIMENSIONAL

STATIONARY CONVECTION-DIFFUSION EQUATION
�

HANS-GÖRG ROOS
�

AND REINER VANSELOW
�

Abstract. Some recently developed finite element stabilizations of convection-diffusion problems generate in
1D five-point difference schemes. Because there are only few results on four- and five-point schemes in the literature
(in contrast to three-point schemes), we discuss some properties of such schemes with special emphasis on the choice
of free parameters for a singularly perturbed problem to avoid oscillations.
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1. Introduction. Let us consider the singularly perturbed boundary value problem������� �	��
������� on ����������� � ����� ��� ����� � ���(1.1)

under the assumptions �! �#" � , 
 ��$��%'&)('� and its discretization with finite differences
or low order, in general, linear finite elements. It is well known that the use of the central
difference scheme or the Galerkin method with linear elements leads to wild oscillations on
standard meshes due to the existence of an exponential boundary layer at $ � � unless the
mesh width is as small as � , which makes no sense from the practical point of view.

Therefore, it is quite standard to apply some kind of upwinding in the finite difference
framework or to stabilize the Galerkin finite element method (here we do not discuss other
approaches, e.g., upwinding in the finite volume method).

For simplicity, we restrict ourselves to uniform meshes with the mesh width * and the
mesh points $+-, �/. * , .0� ���1�2��313�3��54 , with $6 � � , assuming always �87:9 * and moderate9 . We use the difference operators;=< � +-, � � + <?> �@� +* � ;BA � +C, � � + �D� + AE>* � ;!F � +C, � � + <?> �D� + AE>G * 3
Then, simple upwinding reads��� ; < ; A � + �)
 + ; < � + ��� +�� .-� �2�13�313��H4 � �2�� F ��� 6 � ���(1.2)

and the corresponding simplest stabilization of the Galerkin method based on linear elements
is � � � � I �KJ �I � � � 
L� � I �KJ I �NM * G � 
L� � I �KJ �I � � � � �HJ I ��3(1.3)

Remark that the stabilization term
I O � 
�� � I �KJ �I � in the finite element framework has its analogue

in the finite difference language; one can rewrite (1.2) in the form��� � + <?> � G � +�M � + AE>* O �)
 + � + <?> �D� + AE>G * �P
 + * G � + <0> � G � +�M � + AE>* O �/� + 3(1.4)Q
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Because (1.2) and (1.3) are first-order methods, one is interested in constructing higher-order
methods. Here we do not discuss the midpoint upwind finite difference scheme [10] or
streamline diffusion based on linear elements [11], because we want to compare approaches
leading to four- or five-point schemes. For a survey concerning such schemes, see [8, Chap-
ter I.2]. But this survey shows that theoretical results for such schemes are rare. For simplic-
ity, from now on, we assume 
 to be constant in the given problem (1.1).

Our renewed interest in such schemes comes from the fact that several recently developed
finite element stabilizations of convection-diffusion problems [3, 4, 7] generate in 1D such
five-point schemes. Moreover, in most cases, the optimal tuning of parameters involved in
the stabilization term is an open problem.

The main purpose of our paper is to explain the close relation of the recently proposed
stabilization methods as edge stabilization or local projection to Frjazinov-type difference
schemes, which are only weakly monotone. Moreover, it turns out that the “optimal” choice
of parameters in these symmetric stabilization methods is more complicated than for four-
point upwind schemes.

2. Finite difference schemes. A well-known four-point scheme for solving (1.1) is
given by ��� ; < ; A � + ��
 ; F � +M 
�R* � �S� + AT> MVU � + � U � + <?> M � + < O � �/� + � .0� �2��313�3��54 � G ���� ; < ; A � 6 AT> ��
 ; < � 6 AT> �/� 6 AE> �� F ��� 6 � ���
(2.1)

where R %W� is a parameter. Remark that the stabilization term is a consistent approximation
of the third-order derivative multiplied by * O .

It is quite interesting that the scheme (2.1) is, for certain values of the parameter R ,
inverse-monotone.

To see that, let us introduce matrices X > , X O of the format ��4YM�����Z���4YM���� by

X > � R � � X > �
[\\\\\\\]
� � � �^ ^ MP& �`_

. . . . . . . . .^ ^ M)& �`_ �� a bc�� � � � �

dfeeeeeeeg �hX O �
[\\\]
� � � �

. . . . . .� � �� �
dfeeeg 3

Then, with i �j� � ^ MP&=M _ � , the product kX � X > X O reads

kXl� R � � kX �
[\\\\\\\]
� � � � � �^ & i _

. . . . . . . . . . . .^ & i _� amb � a � b� � � � �

dfeeeeeeeg 3
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Except for the first row, this matrix realizes the coefficient matrix of (2.1) (multiplied by * ),
which is

Xl� R � � X �
[\\\\\\\]
� � � � �^ & i _

. . . . . . . . . . . .^ & i _� amb � a � b� � � � �

dfeeeeeeeg �
with a �j� �* �hb � �* M 
 �
and ^ �n� �* M 
 � �G �)R ���o& � G �* MVU 
�R �pi �j� �* ��
 � �G MPU R ��� _q��
�R 3
Because R %W� and 
 (:� , it follows that _ %W� and ^ Mr& ���ts *uM 
 � G R MP� s G �0(W� . Hence,X > � R � is an X -matrix if and only if ^ 7 � . This is equivalent to the conditionR % �G � �
 * 3(2.2)

Because X O is an M-matrix too, under the condition (2.2) (and R %v� ), the matrices X > � R �
and X O and hence the matrix kXw� R � are inverse-monotone.

Let us remark that kXl� R � realizes the coefficient matrix of (2.1) (multiplied by * ), if we
replace the homogeneous Dirichlet boundary condition � �x$ F � � � by the Neumann boundary
condition � � �x$ F � � � and use a common discretization.

Now, because kXl� R � � is inverse-monotone for R % R � �:y{z}|~ ��� >O ���� IN� , we can prove
for the case R��vR � that the matrix Xl� R � is inverse-monotone too.

Namely, for the case R � (�� in which ^ � � , the relation Xl� R � ��J�%�� implieskX�� R � ��� J O �KJ O �KJ}�2��313�3��HJ}6 <?>5��� %�� . Because kXl� R � � is inverse-monotone, we concludeJ}+W%�� for .'� G �5U��13�3�3��54�M�� . Additionally, J > %�� due to the first inequality ofXl� R � ��J�%:� . Thus, Xl� R � � is inverse-monotone.

REMARK 2.1. Numerical experiments lead to the conjecture that Xl� R � is inverse-
monotone for R ( R � too, but in the moment we are not able to prove it.

Before we discuss other methods with stabilizations, let us prove the inverse-monotonici-
ty by another approach, which is similar as above. We study a modified scheme in which the
discretization in $ 6 AE> of (2.1) is replaced by��� ; < ; A � 6 AE> �)
 ; F � 6 AT> M 
�R* � �S� 6 A O M G � 6 AE> �D� 6 � �/� 6 AT> 3
If the coefficient matrix of the modified scheme is denoted by X mod � R � , we now have

a mod � ^ �n� �* M 
E� �G �)R�� � b mod � �* M 
T� �G M R�� 3
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Consequently, we obtain by multiplication of X mod � R � from the left with the matrix

X � �
[\\\\\\\\\\]

��� � �� � �� � � ...
...

. . . . . .�m���1� �������� �m���1� ���m������ ����� � �

dfeeeeeeeeeeg
�

and we have X)�t� R � � X�� � X)�1X mod � R � , which is an X -matrix for R % R � �/y{z�|~ ��� >O ��� IN� and *P% O �� (which specifies our general assumption �B7�9 * ). Because ��X mod � AT> ���X � � AT> X � � the matrix X mod is inverse-monotone as well.
Let us finally not that the technique just used corresponds to Kopteva’s approach [6] to

estimate the discrete Green’s function for a modified discretization with R�� � s G .
Instead of using a stabilization term of the form * O � � � � , one can also use * � �N� �L� . A

well-known stencil to approximate the fourth-order derivative is given by� �x$ + A O � ���t� ��$ + AE> �?MP� � ��$ + � �@�t� ��$ + <?> �NM � �x$ + < O �* � ��� � �L� �x$ + �NM' ¡��* O ��3
Therefore, it is natural to stabilize the central scheme in the interior mesh points by�@� ; < ; A � + �)
 ; F � +M 
 i* � � + A O �D�2� + AE> MV� � + �@�t� + <?> M � + < O � �v� + � .C� G �13�3�3��H4 � G 3(2.3)

Here ir%W� is a parameter.
It is clear that the same discretization and hence also stabilization cannot be used for all

interior mesh points. For the five-point scheme (2.3) in the mesh points $ > and $6 AT> , some
modification is necessary. In the points $ > , $6 AT> , we follow the idea of Frjazinov [10] and
choose the stabilization and, consequently, the discretization in such a way that the matrix X
corresponding to the stabilization term is symmetric and positive semi definite.

Because the stabilization (2.3) consists of a difference approximation of the fourth-order
derivative, the following question arises: which results are known for symmetric and positive
semi definite difference schemes for fourth-order differential operators?

It turns out that the authors of [1], in contrast to many other books, discussed this ques-
tion. Let us consider the boundary value problem�£¢?��$��¤ � � � � � M)a	��$�¥¤ ��� �x$��� on �����1�����
subject to one of the three types of boundary conditions

(i) ¤E�x$ � � � ^ � ¤ � �x$ � � � &¦�
(ii) ¤E�x$ � � � ^ � ¤ � � �x$ � � � &¦�
(iii) ¤ � � �x$ � � � ^ �§�£¢¨¤ � � � � �x$ � � � &¦�

with $ � � � and $ � � � .
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For instance, a discretization of the boundary conditions (i) leads to the matrix X of
format ��4 � ����Z���4 � ��� (in the case ¢�©j� , aª©v� ),

X �
[\\\\\\\\\]

« �S� � ��S� � �S� �� �S� � �S� �
. . . . . . . . . . . . . . .� �S� � �S� �� �S� � �S�� � �S� «

dfeeeeeeeeeg 3
With J � �xJ > ��313�31�KJ 6 AE> � � and ¬ F �� G J > , ¬ 6 �� G J 6 AT> , ¬ + �� J + AE> M G J + � J + <?> ,.C� �2��313�3��54 � � , J F � J 6 � � , the matrix X satisfies (see [1])

��X®J¨�HJ¯� � �G ¬ OF M 6 AE>° +²± > ¬ O+ M �G ¬ O6 �(2.4)

where ���³���´� denotes the Euclidean scalar product.
Alternatively, based on the boundary conditions (ii), the generated matrix X � is almost

identical with X (with the exception that the number 7 is to replace by 5) and satisfies

��X � J�KJ	� � 6 AE>° +³± > ¬ O+ �(2.5)

instead of (2.4).
Thus, we can, e.g., complete the discretization of (1.1) based on (2.3) by��� ;=<C;BA � > �)
 ;!F � > M 
 i* �xµ � > ���2� O M � �1� ��� > ���� ; < ; A � + ��
 ; F � +M 
 i* � � + A O �D�2� + AT> MP� � + �@�t� + <?> M � + < O � ��� + � .C� G ��313�3��54 � G ���� ; < ; A � 6 AE> �)
 ; F � 6 AT>M 
 i* � � 6 A � �@�t� 6 A O M)µ � 6 AE> � ��� 6 AE> �� F �/� 6 � ���

(2.6)

and we call it Frjasinov-type difference scheme. So far, the parameter µ admits the value 7 or
5; later we will still generate a scheme with µ � � .

It is obvious that with the property (2.4) of the matrix X we obtain better stability prop-
erties of the scheme. While we only have��¶ � I � � I � F1· I �W��¸ � I ¸ O > �
for central difference, where ¶ denotes the difference operator generating the corresponding
scheme and ���³���´� F1· I denotes the discrete ¶ O scalar product, we have instead for the scheme
(2.6) and ir(W� an improved stability, because��¶ � I � � I � F�· I �:��¸ � I ¸ O > M 
 i-��X � I � � I ��3
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Also with the improved stability of the scheme, oscillations of the discrete solution are pos-
sible as our numerical experiments show.

In [9], a scheme of the type (2.6) for i � � s�� is called weakly monotone, because the
difference equation ¹ � ¤ + A O � ¹ � ¤ + AE> M ¹ O ¤ + � ¹ > ¤ + <0> M ¹ F ¤ + < O � ���(2.7)

with ¹ F � ¹ � � 
� * �
¹ � · > �vº 
G * M �* O M 
* �

¹ O � G �* O M U 
G * �
admits the following property: all roots of the characteristic equation of (2.7) are real and
positive or have a positive real part [9]. It seems that this property excludes wild oscillations,
but the influence of the discretization in the grid points near to the boundary is so far not
absolutely clear.

Further, we do not know error estimates for Frjasinov-type schemes with respect to the
maximum norm in the singularly perturbed case.

3. Related schemes generated by stabilizing linear finite elements. As mentioned
above, the difference scheme (2.1) is based on a stabilization term, which is a consistent
approximation of the third-order derivative multiplied by * O . In a finite element context, one
could realize that perturbation by the discretization:

Find � I¡»½¼I , such that

� � � � I �HJ �I � � � 
�� � I �KJ I �TM 
G * 6 AE>° +²± > � � � I � + �xJ I �x$ + AT> � � J I �x$ + �H� � � � �KJ I ��¾J I!»¿¼I 3(3.1)

Here ¼I'ÀÂÁ >F �����1��� denotes the space of linear finite elements and �f� � + the jump of a dis-
continuous function in the point $�+ . The scheme generated by (3.1) coincides with (2.1) andR�� � s G . So far, to the best of our knowledge, nobody observed the possibility to generate
that scheme based on (3.1) and there does not exist an error analysis for the finite element
approach.

It is much more popular to stabilize based on approximations of the fourth-order deriva-
tive. Burman and Hansbo introduced in [3] the edge stabilization of the Galerkin method. For
problem (1.1) with constant coefficients, the method has the form

� � ��I �KJ �I � � � 
L���I �HJ I �NM 
 iu* O 6 AE>° +³± > � ���I � + � J �I � + � � � �HJ I ��¾J I!»¿¼¨I 3(3.2)

It is not difficult to see that (3.2) is equivalent to the difference scheme��� ; < ; A � > �)
 ; F � > M 
 i* ��Ã � > �D�2� O M � � � �/� > ���� ; < ; A � + �)
 ;!F � +M 
 i* � � + A O �D�2� + AE> MV� � + �@�t� + <?> M � + < O � �/� + � .C� G ��313�3��54 � G �� F �/� 6 � �
(we omit the corresponding equation in $ 6 AE> ), which is scheme (2.6) with µ � Ã .
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The method (3.2) belongs to the class of symmetric stabilization FEMs of the general
form ¹�Ä � � I �HJ I �NM'ÅS� � I �KJ I � � � � �KJ I ��¾J I »½¼ I 3(3.3)

Here

¹¯Ä ���³���´� denotes the bilinear form of the pure Galerkin approach and ÅS�K�²�1� � the symmet-
ric stabilization. Remember that in the finite difference framework Frjasinov-type schemes
are based on a similar idea.

Introducing Æ�Ç8Æ OÈ �:��¸ Ç ¸ O > M ¸ Ç ¸ OF MVÅS� Ç � Ç ���
typical error estimates for symmetric stabilization FEMs do have the form (for linear finite
elements) Æ �=�@� I Æ È 7'ÉËÊ�� >KÌ O *ÍMV* � Ì O1Î ¸ �-¸ O 3(3.4)

Because different methods are analyzed in different norms, a fair comparison of different
methods is not easy. We simply use the maximum norm in our numerical experiments pre-
sented later.

Next we present two variants of projection methods. In the first class of projection meth-
ods, one uses a projection Ï into ¼�I . The discretization is given by¹ Ä � � I �HJ I �TM 
ÑÐiE*#Ò � I � � Ï¦� � I � ���HJ I � � Ï¦��J I � �HÓ � � � �KJ I � ¾�J I!»B¼I 3(3.5)

Here Ò��³���´Ó denotes some arbitrary scalar product.
Let us introduce the special scalar product (with ÔE�x$TÕÑ� �/Ö²×³y¡Ø�ÙªÚ Õ Ô���ÛK� )Ò Ç �HJ¯ÓS, � 6° +³± > * �

Ç J¯���x$ <+ AT> �TM/� Ç J¯���x$ A+ �G
and denote by Ï Ç »½¼I the orthogonal projection with respect to that discrete scalar product,
i.e., Ï Ç »½¼I is defined by ÒxÏ Ç �KJ I Ó � Ò Ç �HJ I Ó�¾�J I¡»½¼¨I 3
Then, the method (3.5) generates the scheme (again � F �v� 6 � � and we omit the equation
for .C� 4 � � )��� ; < ; A � > �)
 ; F � > M 
-Ði� * � « � > �D�2� O M � � � �/� > ���� ; < ; A � + �)
 ; F � +M 
-Ði� * � � + A O �D�2� + AE> MV� � + �@�t� + <?> M � + < O � �/� + � .0� G ��313�3��54 � G �
which is nothing but scheme (2.6) with µ � « and i ��Ði s�� .

REMARK 3.1. Codina [4] proposed a nonsymmetric variant of (3.5) based on the ¶ O
scalar product ���³���´� ,¹ Ä � � I �KJ I �NM 
 iT*N� � � I � Ï¦� � � I ���KJ �I � � � � �KJ I ��¾J I{»B¼I 3(3.6)
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In his original version, the orthogonal ¶ O -projection is used (which is practically bad). Then,
the symmetric and nonsymmetric versions coincide, because� � � Iª� Ï¦� � � I ���HÏ¦�xJ �I � � � ��3
But if we replace Ï in (3.6) by some other local projection and, e.g., use the Oswald projector
(or the Clemént projector), the symmetric and nonsymmetric versions become different. It
turns out that we generate a seven-point difference scheme with the symmetrized version, but
we generate the difference scheme (2.6) when using the nonsymmetric version (3.6).

The second class of symmetric projection methods uses a macro mesh ÜÝ and a second
finite element space X I of possibly discontinuous finite elements. Now the projector Ï I
projects into X I and the method reads¹¯Ä � � I �KJ I �NM 
 iE* °³Þ � � � I � Ï I � � � I ���HJ �I � Ï I �xJ �I � � Þ � � � �HJ I ��¾�J I »½¼ I 3(3.7)

We denote by ���³���´� Þ the ¶ O scalar product restricted to some X » Ü Ý . For linear elements
it is standard to choose X I as the space of piecewise constants on the macro mesh and to
define the projection as the piecewise orthogonal ¶ O -projection (we do not discuss schemes
based on enrichment of approximation spaces; see [7]).

Often a
G * -mesh is proposed to be the macro mesh. Then the following stencils are

generated by the stabilization term:��� ; < ; A � + �)
 ;!F � +M 
 i* � �S� + AT> M G � + �@� + <0> � ��� +�� if . is odd ���� ; < ; A � + �)
 ;!F � +M 
 iG * � � + A O � G � + AE> M G � + � G � + <0> M � + < O � ��� + � if . is even �� F ��� 6 � ��3
(3.8)

That means the stencils generated are comparable with (1.4), i.e., the stabilization term is a
consistent approximation of the second-order derivative, but only multiplied by * . Therefore,
this variant of the local projection method is not recommended in comparison to the methods
discussed so far.

It seems better to use the piecewise constant projection onto the Voronoi boxes related
to $ + . This method generates, for interior mesh points not close to the boundary, again the
stencil ~ �2� �S� �H��� �S� ��� � , but for the points near the boundary, e.g., $ > ,��� ; < ; A � > ��
 ; F � > M 
 i� * ��� � > �D�2� O M � � � ��� > 3(3.9)

4. How to choose the parameters?. If 4 is even, for central differencing, it is known
that Ö³×²y � Ù F � > ��ß , thus we have unrealistic, even unbounded oscillations. Any stabi-
lization method should avoid oscillations or at least guarantee that occurring oscillations are
small.

For the scheme (2.1), we have inverse-monotonicity if Rà�:y{z�|�~ ����� s G �u�2s � 
 *� � , which
is optimal for avoiding oscillations. Further, the scheme (2.6) is weakly monotone in the sense
of Stoyan [9] for certain parameters i . In the following, we propose a new strategy for the
choice of the stabilization parameter to reduce possible oscillations in the case of layers.

Because the behavior of the discrete solution near the layer is very important, let us look
on the discrete equation in the first mesh point. In all cases (except (3.8)), it has the formG �* � > � �* � O ��
 � OG M 
á ��â � > ��ã#� O M � �1� ��� > *T�
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with constants â#� ã characterizing the scheme and some parameter á . Because for �¿" *
the first mesh point has some distance to the layer, � O �ä� � �jå imply � > ��å . This leads
to (assuming * to be small) á½� >O �§�� Iâ �Dã M�� 3(4.1)

This gives R�� � s G �½�ts � 
 *� for scheme (2.1) and i � � s��Ë�B�ts � G 
 *� for scheme (2.6) withµ � Ã , e.g. If we neglect �ts � 
 *� , this gives R:� � s G and i � � s�� , respectively. But the
numerical experiments of the next section will show that the optimal choice of the parameters
is very important.

Equivalently to the above derivation of (4.1), we can write the scheme in the first mesh
point in the form� �* � � F � G � > M � O � �)
 � O �D� FG M 
áqæ � ã�� â � ��� � F M'â � > ��ã#� O M � ��ç �/� > *
and require that � F (if different from zero) has no influence on the other � + , .Í� �2� G ��313�3�3
That gives � �* M 
�s G M 
Lá � ãn� â � ��� � ��3
and hence (4.1) too.

Analogously, considering five-point schemes like (2.3) in the second mesh point, it fol-
lows that it is necessary to switch off the stabilization. That is verified in our experiments
too.

REMARK 4.1. Our approach corresponds to a necessary convergence condition for*äèé� and �'" * for a problem without a layer component in the solution decomposi-
tion. It is also possible in the usual way [8] to derive a necessary condition for uniform
convergence of � > towards � ��$ > � , but this results in a complicated formula for ár��á ��ê}� withê � � 
 *¨� s � G � � . Because exponential fitting in 2D, especially for problems with characteristic
layers, is useless, we do not follow this approach.

5. Numerical experiments. In our numerical experiments, we set 
�� � and study�à�0� � � �D� � �v� �x$����ë$ » ����������� � ����� ��� ����� � �
for equidistant meshes characterized by 4 � 4¡+ � �1�ª� G + AE> , *�+ � >60ì , .í� �t� G �13�313�� G ��� in
general, for �¡� �1� A�î (except in Figure 5.4), and present all results in the max-norm and in
dependence on 4 .

First we verified for a problem without layers and a smooth solution the convergence rate
of the four-point scheme (2.1) and the five-point scheme (2.6). We fixed � in such a way that� ��$� �vïK×³ð ��ÏE$� solves the problem.

Figure 5.1 shows convergence of order 2 for the four-point scheme (2.1) for different
values of R , coinciding with the theory.

For the five-point schemes (2.6), we consider i � � s�� and the cases µ � Ã	�H��� « . If µ � Ã ,
we have consistency of order 1 in the mesh points close to the boundary; in the other cases
this order is 0. We hope for convergence of order 2 (but do not have a proof in the maximum
norm); but only the scheme with µ � Ã clearly shows this behavior; see Figure 5.2.

This little surprising fact can be explained with the consistency order near the boundary:
in the nonsingularly perturbed case for ñ th order equations, consistency of order ò in the
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FIG. 5.1. Order of convergence for the
scheme (2.1) with ó . . . ôËõröH÷Lø , ù . . . ôËõàø ,ú . . . ô`õ�û`ü5ý�þ5ÿ��KöH÷Lø�� � ÷ ���	��
� .
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FIG. 5.2. Order of convergence for the scheme
(2.6) with ó . . . � õ�� , ù . . . �Sõ�� , ú . . . � õ��

.

interior and ò � ñ near to the boundary gives convergence of order ò ; see [2]. But for
singularly perturbed problems this property does not hold uniformly with respect to � .

Remark that in Figures 5.1 and 5.2 we stop the output for some value of 4 , because for
larger 4 the influence of roundoff error is dominant.

To study the numerical behavior of our schemes for a problem with a layer, we choose� �x$�� ��� Ú AT> and obtain an exact solution of the structure� ��$� ��9 > � ��íM � � Ú AT> M 9 O � A Ú Ì � 3
Because we want to study equidistant meshes, it makes no sense to measure convergence
rates. Instead, we observe the error behavior for fixed small � and decreasing * .

It is well known that for upwind schemes the error at the layer can increase for decreasing* in a certain region depending on � ; see [8, Chapter I, Figure 2.1]. We expect the same
principal behavior for our schemes but want to study this effect and its dependence on the
parameters R and i in the schemes.
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FIG. 5.3. Error behavior for the four-point
scheme (2.1) with ú . . . ô�õ�ÿ , ù . . . ônõ öH÷Lø ,� . . . ôSõBø , ó . . . ôSõàû`ü5ý�þ5ÿ��KöH÷Lø�� � ÷ ���	��
� .
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FIG. 5.4. Error behavior for the four-point
scheme (2.1) in dependence on � . . . � õ öKÿ���� ,ù . . . � õ@öKÿ���� , ó . . . � õ@öKÿ���� , ú . . . � õ@öKÿ�� � .

Figure 5.3 shows the error behavior for the four-point scheme (2.1) for different values
of R .
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It turns out that the choice Rà�:y{z�|�~ ����� s G �q�ts � 
 *� � is the best, theoretically, to explain
by the fact that for this choice the scheme does not employ the “outflow” boundary value � F .

Figure 5.4 shows the results for R��/y{z�|~ ���1� s G �@�ts � 
 *¨� � and different � .
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10−2

10−1

100

FIG. 5.5. Error behavior for ó . . . one-point up-
wind scheme (1.2), ù . . . four-point scheme (2.1) withô`õ@öH÷Lø , � . . . five-point scheme (2.6) with !uõröH÷#" .
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FIG. 5.6. Error behavior for the five-point
scheme (2.6) with !%$Nõ�û`ü5ý�þ5ÿ��HöH÷#"&� � ÷ � ø �	��
� andú . . . !�'¯õ(!%$ , ù . . . !�'	õªÿ , � . . . !�'¯õqû`ü5ý�þ5ÿ�� � öH÷Lø)�
� ÷ ���	��
*
 ÷,+ � .

For the five-point scheme (2.6) (now we always use the variant with µ � Ã ), the choice
of the parameter i is extremely important. If we simply choose some positive value, sayi � � s�� , the result for �r" * is bad. Figure 5.5 shows a comparison with the four-point
scheme (2.1) for R�� � s G and with one-point upwinding (central differencing with upwinding
only in the nearest mesh point to the layer).

To eliminate the influence of � F , it is necessary to choose in the first mesh point i > �y{z�|~ ���1� s��í�{�ts � G 
 *¨� � , but additionally i O � � in the second mesh point. Figure 5.6 clearly
demonstrates that the choice i > �/y{z�|~ ���1� s��u�@�ts � G 
 *� � alone is not sufficient.

If i > ��y{z�|~ ����� s��Ë�r�ts � G 
 *� � and i O � � , the choice of the stabilization parameter in
the remaining mesh points is not important.
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FIG. 5.7. Error behavior for optimal parameters and ù . . . scheme (2.1), � . . . scheme (2.6).

Figure 5.7 shows that the four-point scheme and the five-point scheme yield similar re-
sults if the parameters are chosen in an optimal way, i.e., for the scheme (2.1) RD� y¡z}|�~ ���� s G �@�ts � 
 *¨� � and for the scheme (2.6) i > �:y{z�|�~ ����� s�� �r�ts � G 
 *¨� � and i O � � .

Finally, we still study scheme (3.8). If we do not choose i > �äy{z�|�~ ����� s��q���2s � G 
 *¨� �
and i O � � , the scheme is similarly bad as other five-point schemes. But for i �ly¡z}|�~ ���
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 *¨� � for all odd . , i � � for .í� G , and i � � s�� for all other even . , the scheme
is not so good as the schemes (2.1) and (2.6) for optimal parameters, compare Figures 5.7
and 5.8.
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FIG. 5.8. Error behavior for the scheme (3.8) and ú . . . !ªõ@û`ü5ý�þ5ÿ��HöH÷#"-� � ÷ � ø �	��
� for. õ�ö , !qõ@ÿ for all other
.
, ó . . . ! õ¿û`ü5ý�þ5ÿ��KöH÷#"/� � ÷ � ø �	��
0� for all odd

.
, !ªõrÿ for

. õ@ø ,
and !Ëõ@öH÷#" for all other even

.
.

To summarize, we observed that the schemes (2.1) and (2.6) only beat the one-point
upwind scheme if the stabilization parameters are extremely carefully chosen, especially for
the five-point scheme.

Of course, in 2D it is much more complicated to tune the parameters in such a way that
the outflow boundary values do not influence the numerical solution. Recently, Knobloch
[5] studied this question for the SUPG stabilization (which generates simpler stencils than
edge stabilization or local projection based on macro elements). Knobloch proved that it is
in 2D generally not possible to define the SUPG parameter in such a way that the difference
scheme does not employ the outflow boundary values. Additionally, Knobloch proposed
a new strategy for defining the SUPG parameter, which approximately reflects the wish to
minimize the influence of the outflow boundary values.

For symmetric stabilization methods, however, so far in 2D this is an open question for
further research.
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[9] G. STOYAN AND G. TAKÓ, Numerical Methods III, Typotex, Budapest, 1997 (in Hungarian).

http://www.karlin.mff.cuni.cz/~knobloch/PAPERS/knobloch_supg.pdf


ETNA
Kent State University 
etna@mcs.kent.edu

A COMPARISION OF FOUR- AND FIVE-POINT SCHEMES 75

[10] M. STYNES AND H.-G. ROOS, The midpoint upwind scheme, Appl. Numer. Math., 23 (1997), pp. 361–374.
[11] M. STYNES AND L. TOBISKA, A finite difference analysis of a streamline diffusion method on a Shishkin

mesh, Numer. Algorithms, 18 (1998), pp. 337–360.


