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A TECHNIQUE FOR COMPUTING MINORS OF BINARY HADAMARD
MATRICES AND APPLICATION TO THE GROWTH PROBLEM ∗

CHRISTOS KRAVVARITIS† AND MARILENA MITROULI †

Abstract. A technique to compute all the possible minors of ordern − j of binary Hadamard matrices with
entries(0, 1) is introduced. The method exploits the properties of such matricesS and also the symmetry and
special block structure appearing when one forms the matrixDT D, whereD is a submatrix ofS. Theoretically,
the method works for every pair of valuesn andj and provides general analytical formulae. The whole process
can be standardized and implemented as a computer algorithm. Theusefulness of such a method is justified by
the application to the growth problem. This study gives also more insight into some structural properties of these
matrices and leads to the formulation of the growth conjecturefor binary Hadamard matrices.
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1. Introduction.

1.1. Orthogonal matrices and minors. An orthogonal matrixQ of ordern satisfies
QQT = QT Q = In. By this definition, orthogonal matrices have determinant±1, the
inverse of an orthogonal matrix is its transpose, the product of two orthogonal matrices is
an orthogonal matrix and they yield the property that the Euclidean matrix norm is unitarily
invariant. Therefore it can be proved that they have some important numerical properties;
e.g., the product of any matrix with an orthogonal matrix is always stable (in the sense that
it gives only a small and acceptable error) and orthogonallysimilar matrices have the same
eigenvalues.

An interesting generalization of orthogonal matrices is the concept of generalized nor-
malized orthogonal matrices, as described by the followingdefinition.

DEFINITION 1.1. A matrixA = (aij) is callednormalizedif maxi,j |aij | = 1. A nor-
malizedn×n matrixA is callednormalized orthogonalif AAT = AT A = c(A)In, for some
constantc(A), andgeneralized normalized orthogonalif AAT = AT A = c(A)(In + Jn),
whereJn denotes the matrix of ordern whose entries are all ones.

A similar definition was given in [4]. These matrices are generalized to within a row
scaling, i.e., the product of such a matrix with its transpose gives a multiple either of the
identity matrixIn (e.g., Hadamard and weighing matrices) or of the similarly special struc-
tured matrixIn + Jn; e.g., binary Hadamard matrices.

The purpose of this paper is to study the properties of generalized normalized orthogonal
matrices and, in particular, the computation of minors of binary Hadamard matrices, having
entries(0, 1). In general, it is difficult to obtainanalytical formulaefor minors of various
orders for a given arbitrary matrix. A very interesting result to computenumericallyall prin-
cipal minors of a matrix, yielding anO(2n) algorithm, was presented in [10]. The derivation
of analytical formulae for minors of the orthogonal matrices discussed in this work is possible
due to their special structure and properties.

A Hadamard matrixH of ordern is a matrix with elements±1 satisfying the orthog-
onality relationHHT = HT H = nIn. It can be proved [4, 11] that if H is a Hadamard
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matrix of ordern thenn = 1, 2 or n ≡ 0 (mod4). However, there is still a conjecture that
remains to be settled, on whether Hadamard matrices exist for everyn being a multiple of 4.
For more details on Hadamard matrices the reader can consult[8, 14, 22, 25].

TABLE 1.1
Values of minors for Hadamard matrices of general ordern

minor values of minors

n − 1 nn/2−1

n − 2 0, 2nn/2−2

n − 3 0, 4nn/2−3

n − 4 0, 8nn/2−4, 16nn/2−4

The first known results concerning minors of Hadamard matrices were obtained in [23]
for then − 1, n − 2, andn − 3, minors. In [17] all the possiblen − 4 minors of Hadamard
matrices were calculated theoretically by a method that ledto a numerical algorithm.

TABLE 1.2
Values of minors for Hadamard matrices of orders 12 and 16

minor values of minors

n − 5 0, 16nn/2−5, 32nn/2−5, 48nn/2−5

n − 6 0, 32nn/2−6, 64nn/2−6, 96nn/2−6, 128nn/2−6, 160nn/2−6

n − 7 0, 64nn/2−7, 128nn/2−7, 192nn/2−7, 256nn/2−7, 320nn/2−7,
384nn/2−7, 448nn/2−7, 512nn/2−7, 576nn/2−7

The general results for then−j minors,j = 1, . . . , 4, of Hadamard matrices are summa-
rized in Table1.1. The values forj = 5, 6, 7 have been proved only forn = 12 and 16 [20],
due to computational difficulties of the existing methods, and are given in Table1.2. It can be
seen that all the possible values of then − j minors,j = 1, . . . , 7, follow a specific pattern.
This observation constitutes the following open conjecture for the possible values of minors
of Hadamard matrices.

CONJECTURE1.2 (Conjecture for minors of Hadamard matrices). All possible mi-
nors of dimension(n − j) × (n − j), j ≥ 1, of Hadamard matrices are either0 or

p · n(n/2)−j , for p = 2j−1, 2 · 2j−1, 3 · 2j−1, . . . , s · 2j−1,

where

s · 2j−1 = max{det(A)|A ∈ R
j×j , with entries± 1}

and the value0 is excluded from the casej = 1.

The maximum determinant values for±1 matrices are given in Table1.3. The study of
the above conjecture is expected to lead to useful results concerning the possible values of
determinants of±1 matrices, which are not exactly specified even for relatively small orders
(n = 8). The relevant known results are given in [4, 19].

A binary Hadamard matrix(called alsoS-matrix) is ann × n (0, 1) matrix formed by
taking an(n+1)× (n+1) Hadamard matrix in which the entries in the first row and column
are+1, changing+1 to 0, and−1 to +1, and deleting the first row and column. Therefore,
n ≡ 3 (mod4). A binary Hadamard matrix satisfiesSST = ST S = 1

4 (n + 1)(In + Jn)
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TABLE 1.3
Maximum determinants of±1 matrices

n 1 2 3 4 5 6 7

max.det 1 2 4 16 48 160 576

andSJn = JnS = 1
2 (n + 1)Jn. Further information on binary Hadamard matrices, their

applications and related problems can be found in [8, 12, 22, 25] and in the references therein.
REMARK 1.3. It is important to emphasize that the present work dealsonly with the

specific binary Hadamard matrices that are obtained from thecores of Hadamard matrices
according to the construction described above. These binary Hadamard matrices are actually
the incidence matrices of symmetric balanced incomplete block designs (SBIBDs) with pa-
rameters(4t − 1, 2t, t) [5, 8]. Indeed, ifH is a Hadamard matrix of order4t, then it can be
written in the form

H =

[
1 eT

e A

]

,

whereeT = (1, 1, . . . , 1) is the1 × (4t − 1) vector with elements1. Then the matrixC =
1
2 (J4t−1−A) is the incidence matrix of an SBIBD with parameters(4t−1, 2t, t). An SBIBD
with parameters(4t− 1, 2t, t) is the complement of an SBIBD with parameters(4t− 1, 2t−
1, t − 1), the incidence matrix of which is constructed as1

2 (A + J4t−1). In [18] values of
minors for various families of(1,−1) incidence matrices of SBIBDs were computed and the
growth problem was discussed for them.

EXAMPLE 1.4. The following are three binary Hadamard matrices of small order:





1 0 1
0 1 1
1 1 0



 ,













1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1













,





















1 0 1 1 0 0 1 1 0 0 1
1 1 0 1 1 0 0 1 1 0 0
0 1 1 1 1 1 0 0 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 0 1 0 1 0 0 0 1 1 1
1 0 0 1 1 1 1 0 0 1 0
0 1 1 1 0 0 1 0 1 1 0
0 0 1 0 1 1 1 1 1 0 0
0 0 0 1 0 1 0 1 1 1 1
1 1 0 0 0 1 1 0 1 0 1
0 1 0 0 1 0 1 1 0 1 1





















.

1.2. Notation and preliminary remarks. Whenever a determinant or minor is men-
tioned in this work, we mean its magnitude, i.e., the absolute value. The symbolsIn andJn

stand for the identity matrix and the matrix of ordern whose entries are all one, respectively.
Whenever information on the dimension is not essential, the indices are omitted. We denote
by A(j) the absolute value of the determinant of thej × j principal submatrix in the upper
left corner of the matrixA, i.e.,A(j) is the magnitude of thej × j leading principal minor
of A. An m × n matrix having all its entries equal tox ∈ R will be denoted byxm×n. If
x consists of more than one terms (e.g.,x = k − 1), then parentheses are used aroundx to
avoid confusion.

The notation(κ − λ)I + λJ will be frequently used as a compact notation for a matrix
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of the form







κ λ · · · λ
λ κ · · · λ
...

. . .
λ λ · · · κ








.

If it is essential to specify the ordern of such a matrix, then it will be denoted byXn×n ≡
(κ − λ)In + λJn, for instance,

X2×2 =

[
κ λ
λ κ

]

.

Let yβ+1 be the column vectors containing the binary representationof each integer
β = 2j − 1. Define thej × 1 vectorsuk = y2j−k+1, k = 1, . . . , 2j . We writeUj for all the
matrices withj rows and the appropriate number of columns, in whichuk occursuk times.
Thus,

Uj =

u1

︷︸︸︷

1...1

u2

︷︸︸︷

1...1 . . .

u
2j

−1

︷︸︸︷

0...0

u
2j

︷︸︸︷

0...0
1...1 1...1 . . . 0...0 0...0

. . . . . . .

. . . . . . .
1...1 1...1 . . . 0...0 0...0
1...1 0...0 . . . 1...1 0...0

=

u1 u2 . . . u2j−1−1 u2j−1

1 1 . . . 0 0
1 1 . . . 0 0
...

...
...

...
1 1 . . . 0 0
1 0 . . . 1 0

.

The matrixUj is important in this study because it depicts a general form for j arbitrary rows
of a binary Hadamard matrix.

EXAMPLE 1.5.

U3 =

u1 u2 u3 u4 u5 u6 u7 u8

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

U4 =

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

We provide some useful formulae for two specially structured matrices, which will be
used repeatedly throughout the paper.

LEMMA 1.6. LetA = (κ − λ)Iv + λJv, whereκ andλ are integers. Then,

det A = [κ + (v − 1)λ](κ − λ)v−1 (1.1)

and, forκ 6= λ,−(v − 1)λ, A is nonsingular with

A−1 =
1

κ2 + (v − 2)κλ − (v − 1)λ2
{[κ + (v − 1)λ]Iv − λJv}. (1.2)
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Equation (1.2) is a special case of the Sherman-Morrison formula [3, p. 239], which
computes the inverse of a rank-one correction of a nonsingular matrix B as

(B − uvT )−1 = B−1 +
B−1uvT B−1

1 − vT B−1u
,

whereu, v are vectors andvT B−1u 6= 1. Indeed, we obtain (1.2) letting B = (κ − λ)Iv,
u = −λ[1 1 . . . 1]T andv = [1 1 . . . 1]T .

LEMMA 1.7 (Schur determinant formula [15, p. 21]). Let B =
[

B1 B2

B3 B4

]
. If B1 is

nonsingular, then

det B = detB1 · det(B4 − B3B
−1
1 B2). (1.3)

If B4 is nonsingular, then

det B = detB4 · det(B1 − B2B
−1
4 B3). (1.4)

The paper is organized as follows. In Section2, the strategy to compute all the possible
n − j minors of binary normalized orthogonal matrices is outlined. In Section3, we provide
some useful lemmas and results concerning minors of binary Hadamard matrices as well
as an algorithm suited for this purpose. In Section4, the growth problem is described in
general, the growth conjecture for binary Hadamard matrices is formulated and information
about pivot patterns of binary Hadamard matrices is given. Finally, Section5 summarizes the
results of this work and highlights further improvements and possible extensions.

2. The numerical technique for the evaluation of minors. In this section, we present
the technique we propose to calculate all the possible(n − j) × (n − j) minors of binary
normalized orthogonal matrices of ordern in a general context. However, it can be better
understood through the theoretical proofs and the algorithm of Section3.

In order to compute all the possible(n − j) × (n − j) minors of a binary Hadamard
matrixS, we write it in the form

S =

[
M Uj

V T
j D

]

,

whereM andD are square matrices of ordersj andn − j, respectively. The purpose is
to compute, for every possible upper leftj × j submatrixM , the values of the determinant
of D, which is actually the required minor. The submatricesUj andV T

j contain all possible
j×(n−j) columns and(n−j)×j rows, respectively, which can appear inS, so they must be
created very carefully according to the properties ofS. Although, with appropriate row and/or
column interchanges and, if necessary, with multiplications by−1, it is possible to achieve
Uj = Vj for some binary Hadamard matrices, in general it is not. It isvery important that the
same columns are clustered together inUj , as in Section1.2. In this manner, the computation
is simplified by the block form, and the derivation of analytical formulae is possible.

From the order ofS, the inner products of its firstj rows and, if necessary, the total
number of ones and zeros in the firstj rows of S, we set up and solve a system whose
unknowns are the numbers of columns ofUj . If an exact solution can be found (i.e., there are
no parameters in the solution), the method provides a general formula. If some parameters
exist in the solution, we must determine upper bounds (depending onn) that give all feasible
values for the parameters. Thus, in this case the result willnot be general, but dependent on
n.
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Afterwards, the matrixDT D (or equivalentlyDDT ) is evaluated taking into account
thatST S = SST = 1

4 (n+1)(In +Jn), and the result is written appropriately in block form.
The sizes of the blocks are known since they correspond to thesolution of the system of
equations described above. Finally, we aim at derivingdet DT D by successive applications
of formula (1.3) or (1.4), with the help of (1.1) and (1.2).

Due to the properties ofS, all diagonal blocks ofDT D are of the form(a−b)I +bJ and
each of the remaining blocks consists only of a constant. Also, DT D is always symmetric.
These properties are always taken into account during the computations, so that every matrix
multiplication, inversion and determinant evaluation is not performed explicitly, but in an
efficient manner with the help of (1.1)–(1.4).

It is important to emphasize that the proposed method calculates all the possible(n −
j) × (n − j) minors. The selected rows, which are written as the firstj rows ofA, do not
necessarily appear there, but can be located anywhere in thematrix. They can be moved to
the first rows with appropriate row and/or column interchanges. We write them at the top
only for the sake of better presentation and without any lossof generality. The fact that we
examineall the possible upper leftj × j submatricesguarantees that with this technique we
calculateall the possible(n − j) × (n − j) minors ofA and that we don’t miss any of their
values.

It is also important to stress that the method can be very easily modified to work for
Hadamard matrices as well. We believe it is sensible to present it through the example of
binary Hadamard matrices, which represents a comprehensive but not extensive range of
calculations and yields new results.

The method can be implemented symbolically in a computer algebra system, like Maple,
which guarantees the accuracy of the results avoiding roundoff errors, and preserves analyti-
cal formulae.

3. Main results. In this section, we prove theoretical formulae for then − j minors,
j = 1, 2, 3, 4, of binary Hadamard matrices. We explain why the proof of results for j > 2
is more complicated and why it can be carried out with this technique only for specific, fixed
values ofn. First we give the following, almost straightforward, lemma. Throughout this
section, we setk := 1

4 (n + 1).
LEMMA 3.1. The determinant of a binary Hadamard matrixS of ordern is

2−n(n + 1)
n+1

2 .

Proof. From the definition ofS we have

SST = k(In + Jn) = k






2 1 · · ·
1 2
...

. . .




 = k[(2 − 1)In + Jn].

Equation (1.1) gives

det SST = kn[2 + (n − 1)] = kn(n + 1) =
(n + 1)n+1

4n
.

Sincedet SST = (detS)2, we have

|det S| = 2−n(n + 1)
n+1

2 ,
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which proves the result.
REMARK 3.2. Lemma3.1can also be proved by using the explicit connection between

a Hadamard matrixH of ordern + 1 and a binary Hadamard matrixS of ordern, namely

H − Jn+1 =

[
0 0
0 −2S

]

.

To this end, we may use the invertibility of anyn × n submatrix ofH, since all such minors
are nonzero (cf. Table1.1); this idea does not seem to be applicable to derive more results on
minors ofS, since invertibility cannot be guaranteed for submatricesof H of smaller order.

Before proceeding to further computations, we need the following result, which gives the
number of ones and zeros in every row and column of a binary Hadamard matrix.

LEMMA 3.3. Every row and every column of a binary Hadamard matrixS of ordern
has n+1

2 ones andn−1
2 zeros.

Proof. The result is derived from the propertySJn = JnS = 1
2 (n + 1)Jn, which shows

that the sum of the entries of every row and column of a binary Hadamard matrix isn+1
2 ,

considering that the entries of the matrix are only (0,1).
PROPOSITION3.4. LetS be a binary Hadamard matrix of ordern. Then all the possible

(n − 1) × (n − 1) minors ofS are21−n(n + 1)
n−1

2 .
Proof. SinceS is a binary Hadamard matrix of ordern, it can be written in one of the

following two forms:

S =

















1

(n−1)/2
︷ ︸︸ ︷

1 . . . 1

(n−1)/2
︷ ︸︸ ︷

0 . . . 0
1
...
1 A
0
...
0

















or

















0

(n+1)/2
︷ ︸︸ ︷

1 . . . 1

(n−3)/2
︷ ︸︸ ︷

0 . . . 0
1
...
1 A′

0
...
0

















,

where the first columns contain the appropriate number of ones and zeros below the horizontal
line, so that they haven+1

2 ones andn−1
2 zeros.

From the definition ofS, ST S = k(In +Jn), it follows that the(n−1)× (n−1) matrix
AT A has the form

AT A =

[
A1 A2

A2 A3

]

,

where

A1 = [2k − 1 − (k − 1)]In−1

2

+ (k − 1)Jn−1

2

,

A2 = kJn−1

2

,

A3 = (2k − k)In−1

2

+ kJn−1

2

.

From (1.4) we have

det AT A = detA3 · det(A1 − A2A
−1
3 A2), (3.1)

while equation (1.1) gives

det A3 = 2−n(n + 1)
n+1

2 . (3.2)
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With the help of (1.2) we obtain

A−1
3 =

1

k(n + 1)

{

[(n − 1) + 2]In−1

2

− 2Jn−1

2

}

,

and careful calculations give

A1 − A2A
−1
3 A2 =

1

4

{

[(n − 1) + 2]In−1

2

− 2Jn−1

2

}

.

Equation (1.1) yields

det(A1 − A2A
−1
3 A2) = 22−n(n + 1)

n−3

2 (3.3)

and substituting (3.2) and (3.3) in (3.1) we obtaindet AT A = 22−2n(n + 1)n−1, so that

|det A| = 21−n(n + 1)
n−1

2 .

It is now obvious that we obtain the same value fordet A, independently from the possi-
ble position ofA insideS, if S is compelled to be in the first possible form. Working similarly
for the second possible form ofS yields the same result fordet A′. Hence, we conclude that
all the possible(n − 1) × (n − 1) minors ofS are of magnitude21−n(n + 1)

n−1

2 .
PROPOSITION3.5. LetS be a binary Hadamard matrix of ordern, n > 2. Then all the

possible(n − 2) × (n − 2) minors ofS are 0 or23−n(n + 1)
n−3

2 .
Proof. There are24=16 possible cases for the upper left2 × 2 corner ofS, since the

possible entries are 0 and 1. The proof is illustrated for onematrix, as the other cases can be
handled in a similar fashion. SinceS is ann×n binary Hadamard matrix, we suppose that it
can be written in the following form:

S =

































1 1

u
︷ ︸︸ ︷

1 . . . 1

v
︷ ︸︸ ︷

1 . . . 1

x
︷ ︸︸ ︷

0 . . . 0

y
︷ ︸︸ ︷

0 . . . 0
1 0 1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0
1 1
...

...
1 1
1 0
...

...
1 0 B
0 1
...

...
0 1
0 0
...

...
0 0

































.

From the order of the matrixS, the inner product of its first two rows and the total number of
zeros in the first two rows (according to Lemma3.3), we obtain the following system of four
equations







u + v + x + y = n − 2
1 + u = n+1

4
x + y = n−1

2
1 + v + y = n−1

2
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which has the exact solution

(u, v, x, y) =
1

4
(n − 3, n − 3, n + 1, n − 3).

According to the properties of ann× n binary Hadamard matrix, the(n− 2)× (n − 2)
matrixBT B has the form

BT B =







B1u×u (k − 1)u×v (k − 1)u×x ku×y

(k − 1)v×u B2v×v kv×x kv×y

(k − 1)x×u kx×v B2x×x kx×y

ky×u ky×v ky×x B3y×y






≡

[
B1u×u F

FT G

]

,

where

B1 = [(2k − 2) − (k − 2)]I + (k − 2)J,

B2 = [(2k − 1) − (k − 1)]I + (k − 1)J,

B3 = (2k − k)I + kJ.

Thus, according to (1.3),

det BT B = detB1u×u · det(G − FT B1
−1
u×uF ). (3.4)

From (1.1) we have

det B1u×u =

√
2

2
(n2 − 6n + 25)

(
n + 1

4

)n
4

(n + 1)−
7
4 (3.5)

and from (1.2) B1
−1
u×u = (k1 − λ1)Iu + λ1Ju, where

k1 =
4(n2 − 10n + 53)

(n − 1)(n2 − 6n + 25)
and λ1 =

16(n − 7)

(n − 1)(n2 − 6n + 25)
.

Hence,

G − FT B1
−1
u×uF =

[
K1v×v N2

NT
2 N1

]

,

where the blocksK1v×v, N1, andN2 are calculated. For the sake of brevity and clarity of pre-
sentation, we refrain from stating explicitly the form of all intermediate matrices analytically;
however they are available from the authors on request.

From (1.3) we have

det(G − FT B1
−1
u×uF ) = detK1v×v · det(N1 − NT

2 K1
−1
v×vN2). (3.6)

From this point on, the idea of the proof is to apply consecutively formula (1.3) for the block
matrices appearing, and carry out the calculations with thehelp of (1.1) and (1.2).

Proceeding similarly as above, we calculatedet K1v×v and det(N1 − NT
2 K−1

v×vN2)
making use of (1.1), (1.2), and (1.3). We have

det K1v×v =
2
√

2(n3 − n2 − 5n + 61)

n2 − 6n + 25

(
n + 1

4

)n
4

(n + 1)−
7
4 (3.7)
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and

N1 − NT
2 K1

−1
v×vN2 =

[
P1x×x Q1

QT
1 P2y×y

]

,

where the blocksP1x×x, Q1, andP2y×y are obtained as described.
According to (1.3),

det(N1 − NT
2 K1

−1
v×vN2) = detP1x×x det(P2y×y − QT

1 P1x×x
−1Q1). (3.8)

From (1.1) and (1.2) we have

det P1x×x =
2
√

2(n + 1)
1
4 (n2 − 2n + 13)(n+1

4 )
n
4

n3 − n2 − 5n + 61
(3.9)

and

P2y×y − QT
1 P1x×x

−1Q1 = R3y×y, (3.10)

whereR3y×y = (k2 − λ2)Iy + λ2Jy, k2 = n3−5n2+19n+25
4(n2−2n+13) andλ2 = − n2−2n−3

n2−2n+13 .
Equation (1.1) gives

det R3y×y =
8
√

2(n + 1)
1
4 (n+1

4 )
1
4

n2 − 2n + 13
. (3.11)

Finally, from (3.4)–(3.11) we have

det BT B = detEu×u det K1v×v det P1x×x det R3y×y

=
64(n+1

4 )n

(n + 1)3
= 43−n(n + 1)n−3.

Hence,|det B| = 23−n(n+1)
n−3

2 . Similarly, we handle all the possible remaining cases for
the upper left hand corner and obtain the same result and the value 0.

The following two lemmas specify the possible number of columns of a binary Hadamard
matrix if only few rows of it are considered. They are useful to carry out proofs like that of
Proposition3.5 for (n − j) × (n − j) minors, j > 2. In such cases, the linear systems
occurring from the properties of binary Hadamard matrices contain parameters and cannot be
solved exactly. Lemma3.7can be used to establish bounds for the parameters in the solutions
of the systems, which actually represent columns of a binaryHadamard matrix, if the firstj
rows are considered separately. Hence, there exist constraints on the number of columns of
a binary Hadamard matrix, which moreover limit the calculations of the proposed technique.
Since the upper bounds for the parameters are dependant on the ordern, we cannot provide
general results in these cases, but only for specific values of n.

LEMMA 3.6. Let S be a binary Hadamard matrix of ordern, n > 2. Then for every
triple of rows ofS the number of columns which are

(a) (1, 1, 1)T or (0, 0, 0)T is (n − 3)/4,
(b) (1, 1, 0)T or (0, 0, 1)T is (n + 1)/4,
(c) (1, 0, 1)T or (0, 1, 0)T is (n + 1)/4,
(d) (1, 0, 0)T or (0, 1, 1)T is (n + 1)/4.
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Proof. Three rows of the binary Hadamard matrixS can be written as

u1

︷ ︸︸ ︷

1 . . . 1

u2

︷ ︸︸ ︷

1 . . . 1

u3

︷ ︸︸ ︷

1 . . . 1

u4

︷ ︸︸ ︷

1 . . . 1

u5

︷ ︸︸ ︷

0 . . . 0

u6

︷ ︸︸ ︷

0 . . . 0

u7

︷ ︸︸ ︷

0 . . . 0

u8

︷ ︸︸ ︷

0 . . . 0
1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0
1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0

.

From the order of the matrixS, the inner product of its first three rows and the total numberof
ones and zeros in the first three rows (according to Lemma3.3) we get the following system
of ten equations







u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 = n
u1 + u2 = n+1

4
u1 + u3 = n+1

4
u1 + u5 = n+1

4
u1 + u2 + u3 + u4 = n+1

2
u5 + u6 + u7 + u8 = n−1

2
u1 + u2 + u5 + u6 = n+1

2
u3 + u4 + u7 + u8 = n−1

2
u1 + u3 + u5 + u7 = n+1

2
u2 + u4 + u6 + u8 = n−1

2

which has the solution

u1 = n−3
4 − u8

u2 = u8 + 1
u3 = u8 + 1
u4 = n−3

4 − u8

u5 = u8 + 1
u6 = n−3

4 − u8

u7 = n−3
4 − u8

u8 = u8.

From the solution we see that

u1 + u8 = n−3
4 ,

u2 + u7 = u3 + u6 = u4 + u5 = n+1
4 ,

and the result follows immediately.
LEMMA 3.7. Let S be a binary Hadamard matrix of ordern, n > 2. For all the 2j

possible columnsu1, . . . ,u2j of S (or Uj) included in the firstj rows,j ≥ 3, it holds







0 ≤ ui ≤
n − 3

4
, i ∈

{
1, . . . , 1

8 · 2j
}
∪

{
7
8 · 2j + 1, . . . , 2j

}

0 ≤ ui ≤
n + 1

4
, otherwise.

Proof. If we consider separately the first three rows from the firstj rows mentioned in
the statement of the lemma, we observe for the2j possible columnsui of Uj , i = 1, . . . , 2j ,
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that

u1(1 : 3) = . . . = u 1
8
2j (1 : 3) = (1, 1, 1)T

u 1
8
2j+1(1 : 3) = . . . = u 2

8
2j (1 : 3) = (1, 1, 0)T

u 2
8
2j+1(1 : 3) = . . . = u 3

8
2j (1 : 3) = (1, 0, 1)T

u 3
8
2j+1(1 : 3) = . . . = u 4

8
2j (1 : 3) = (1, 0, 0)T

u 4
8
2j+1(1 : 3) = . . . = u 5

8
2j (1 : 3) = (0, 1, 1)T

u 5
8
2j+1(1 : 3) = . . . = u 6

8
2j (1 : 3) = (0, 1, 0)T

u 6
8
2j+1(1 : 3) = . . . = u 7

8
2j (1 : 3) = (0, 0, 1)T

u 7
8
2j+1(1 : 3) = . . . = u 8

8
2j (1 : 3) = (0, 0, 0)T

whereui(1 : 3) denotes the first three entries (using Matlab notation) of the columnui of Uj .
This observation arises easily from a combinatorial counting and can also be verified on the
matricesU3 andU4 given in Section1.2.

From Lemma3.6we conclude

u1 + . . . + u 1
8
2j + u 7

8
2j+1 + . . . + u 8

8
2j = n−3

4

u 1
8
2j+1 + . . . + u 2

8
2j + u 6

8
2j+1 + . . . + u 7

8
2j = n+1

4

u 2
8
2j+1 + . . . + u 3

8
2j + u 5

8
2j+1 + . . . + u 6

8
2j = n+1

4

u 3
8
2j+1 + . . . + u 4

8
2j + u 4

8
2j+1 + . . . + u 5

8
2j = n+1

4 .

The result follows immediately from these relations, by taking into account thatui ≥ 0, as
they denote numbers of columns.

In addition, another difficulty in calculating(n− j)× (n− j) minors,j > 2, arises from
the fact that we have to examine2j2

possible upper left corners, which are singled out from
the general form ofj rows of a binary Hadamard matrix, denoted byUj . This observation,
in combination with the fact that the computations in the proofs of Propositions3.4 and3.5
follow a standard procedure based on the successive applications of formula (1.3) or (1.4),
led us to develop this technique from an algorithmic point ofview. Thus, we constructed the
following Minors Algorithm, with the intent of calculating all the possible(n − j) × (n − j)
minors,j ≥ 1, of binary Hadamard matrices.

The implementation on a computer algebra package takes as input every possible upper
left submatrix. For each one of them, the necessary computations are performed symbolically.
The Minors Algorithm can be applied theoretically for everyvalue ofn andj. Lemma3.7
is used for finding the possible values of the parameters in the solutions of the linear systems
appearing at step 2. The symbolVj stands for all the possible columns with entries 0 and 1,
like Uj ; we choose a different notation in order to show that the matricesUj andVj are not
necessarily the same.

The Minors Algorithm

Input: All possiblej × j matricesM , which can exist in the upper left corner

of ann × n binary Hadamard matrixS =

[
M Uj

V T
j D

]

.

Output: Absolute values of all the possible(n − j) × (n − j) minors ofS.

FOR EVERYmatrixM
Step 1: FORM the system of1 +

(
j
2

)
+ 2j equations and2j unknownsui that

results from counting the columns, the inner products of every two
distinct rows of the matrix[M Uj ] and the total number of ones and zeros
in every row of[M Uj ].

Step 2: SOLVEthe system for allui.
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FORall the parameters attaining the values0, . . . , n−3
4 or n+1

4
Step 3: IF ui ≥ 0 andui is an integer,i = 1, . . . , 2j

DT D ≡
[
E1 F1

FT
1 G1

]

G1 − FT
1 E−1

1 F1 ≡
[
E2 F2

FT
2 G2

]

ELSEthere are no acceptable solutions
END IF

Step 4: FORk = 2, . . . , 2j − 2

Gk − FT
k E−1

k Fk ≡
[
Ek+1 Fk+1

FT
k+1 Gk+1

]

END
Step 5: E2j = G2j−1 − FT

2j−1E
−1
2j−1F2j−1

Step 6: det DT D :=

2j

∏

i=1

det Ei, |det D| =
√

det DT D

END{for all the parameters}
END{for every matrixM }

PROPOSITION 3.8. Let S be a binary Hadamard matrix of ordern = 11. Then all
possible(n − 3) × (n − 3) minors of the matrixS are 0 or25−n(n + 1)

n−5

2 .
Proof. The idea is similar to the proof of Proposition3.5. S is written in the form

S =

[
M U3

V T
3 D

]

and all the29 = 512 possible3 × 3 upper left cornersM are taken as input for the Minors
Algorithm. The familiar properties ofS lead to a linear system which has the same left hand
side as the system in the proof of Lemma3.6, but different right hand sides, according to the
upper left hand corner selected forM . The solutionsu1, . . . , u8, representing the numbers
of columns ofS are expressed in terms of the parameteru8, which is allowed to take the
values0, 1, 2, according to Lemma3.7. For the acceptable solutions having positive integer
components, the rest of the procedure of the Minors Algorithm is carried out in order to
specify the determinant ofD for eachM . For instance, at Step 3 of the algorithm the matrix
DT D has the form

DT D =















E1 k2 k2 k1 k2 k1 k1 k
F k1 k1 k1 k1 k k

F k1 k1 k k1 k
G k k k k

F k1 k1 k
G k k

G k
H















,

wherek = n+1
4 , k1 = k − 1, k2 = k − 2, E1 = kIu1

+ (k − 3)Ju1
, F = kI + (k − 2)J ,

G = kI + (k − 1)J andH = kI + kJ . The diagonal blocksE1, F, F, . . . , G,H, are of
known ordersu1 × u1, u2 × u2, . . . , u8 × u8. The elementsk, k1, k2, represent blocks of
appropriate sizes (according to the notation introduced inSection1.2), but the subscripts are
omitted for a more compact presentation. From now on, the sequence of matricesEk, Fk,
Gk, k = 2, . . . , 8, results from Steps 4 and 5 of the Minors Algorithm. For the sake of brevity
we do not describe all the matrices explicitly.
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By applying the Minors Algorithm forn = 11 andj = 4, the following result is derived.
PROPOSITION 3.9. Let S be a binary Hadamard matrix of ordern = 11. Then all

possible(n − 4) × (n − 4) minors ofS are 0,27−n(n + 1)
n−7

2 or 28−n(n + 1)
n−7

2 .

4. Application to the growth problem.

4.1. Description of the problem. The backward error analysis for Gaussian elimina-
tion (GE) on a matrixA = (a

(0)
ij ) is traditionally expressed in terms of thegrowth factor

g(n,A) =
maxi,j,k |a(k)

ij |
maxi,j |a(0)

ij |
,

which involves all the elementsa(k)
ij , k = 0, 1, 2, . . . , n − 1, that occur during the elimina-

tion [3, 13, 24]. Matrices with the property that no row and column exchanges are needed
during GE with complete pivoting are calledcompletely pivoted(CP) or feasible. For a CP
matrixA we have

g(n,A) =
max{p1, p2, . . . , pn}

|a(0)
11 |

, (4.1)

wherep1, p2, . . . , pn are the pivots ofA. According to known theorems [3, 24], it is clear
that the stability of GE depends on the growth factor. Ifg(n,A) is of order 1, the elimination
process is stable. Ifg(n,A) is larger, we must expect instability. The study of the values
assumed byg(n,A), and the specification of pivot patterns, are referred to asthe growth
problem.

In [2] Cryer conjectured that “for real matricesg(n,A) ≤ n, with equality if and only
if A is a Hadamard matrix”. This conjecture became one of the mostfamous open problems
in Numerical Analysis and has been investigated since then by many mathematicians. The
inequality was finally shown to be false in [9], however its second part is still an open problem.

Since binary Hadamard matrices are connected with Hadamardmatrices, it is sensible to
apply GE with complete pivoting on equivalent (i.e., obtained by row and/or column inter-
changes) binary Hadamard matrices of various orders and write down their pivot patterns and
growth factors.

Tables4.1 and 4.2 show some pivot patterns which appear if GE with complete piv-
oting is applied, experimentally, to 200000 equivalent binary Hadamard matrices for each
ordern = 15, 19,23, 31, and 39. The last column gives the total number of pivot patterns
that appeared in the experiments. Especially forn = 15, the binary Hadamard matrices
are obtained separately from Hadamard matrices of order 16,which are classified in five
equivalence classes I,II,...,V, see [25]. It is interesting to mention that the total numbers of
pivot patterns observed experimentally for Hadamard matrices of order 16 from the equiva-
lence classes I,II,...,V, are 9,15,10,12,12, respectively. On the contrary, forn > 15 the total
numbers of pivot patterns of binary Hadamard matrices are significantly fewer than the ones
obtained from the corresponding Hadamard matrices; see [16]. The (n − 3)th pivot, i.e., the
fourth counting from the last pivot, is alwaysn+1

8 , except for binary Hadamard matrices of
order 15 obtained from the I-equivalence class of Hadamard matrices of order 16. Finally, it
is interesting to compare the pivot patterns of Hadamard andbinary Hadamard matrices. We
observe (cf. [16]) that with the exception of the first pivot, which is in both cases always 1,
the pivots of binary Hadamard matrices are about one half of the pivots of the corresponding
Hadamard matrices, and consequently the growth factors arehalved, as well. This fact points
out the significance for Gaussian elimination of inserting the entry 0 in binary Hadamard
matrices instead of the entry−1 of Hadamard matrices.
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TABLE 4.1
Pivot patterns of binary Hadamard matrices of ordern = 15

class pivot pattern number

I (1, 1, 2, 1,43 , 1, 2, 1, 2, 2,83 , 2, 4, 4, 8) 12

(1, 1, 2, 1,43 , 2, 3, 1, 2, 2,83 , 2, 4, 4, 8)

(1, 1, 2,32 , 4
3 , 1, 2, 2, 2, 2, 4, 4, 4, 4, 8)

II (1, 1, 2, 1, 5
3 , 6

5 , 2, 1, 2, 2,83 , 2, 4, 4, 8) 15

(1, 1, 2, 1,53 , 6
5 , 2, 4

3 , 2, 2, 8
3 , 2, 4, 4, 8)

(1, 1, 2, 1,53 , 6
5 , 2, 8

5 , 2, 2, 8
3 , 2, 4, 4, 8)

III (1, 1, 2, 1, 4
3 , 9

5 , 2, 1, 2, 2,83 , 2, 4, 4, 8) 18

(1, 1, 2, 1,53 , 9
5 , 2, 1, 2, 2,83 , 2, 4, 4, 8)

(1, 1, 2, 1,53 , 9
5 , 2, 4

3 , 2, 2, 8
3 , 2, 4, 4, 8)

IV/V (1, 1, 2, 1, 5
3 , 9

5 , 2, 1, 2, 2,83 , 2, 4, 4, 8) 16

(1, 1, 2, 1,53 , 9
5 , 2, 2, 2,125 , 8

3 , 2, 4, 4, 8)

(1, 1, 2, 1,53 , 9
5 , 2, 2, 20

9 , 12
5 , 8

3 , 2, 4, 4, 8)

These numerical experiments, in combination with the theoretical results of Section3,
lead to the following new conjecture.

CONJECTURE4.1 (Growth conjecture for binary Hadamard matrices ). Let S be a
binary Hadamard matrix of ordern. ReduceS by GE with complete pivoting. Then, for large
enoughn,

(i) g(n, S) = n+1
2 ;

(ii) Every pivot before the last has magnitude at mostn+1
2 ;

(iii) The three last pivots are (in backward order)n+1
2 , n+1

4 , n+1
4 ;

(iv) The (n − 3)th pivot can ben+1
8 or n+1

4 ;

(v) The first three pivots are equal to1, 2, 2; the fourth can take the values1 or 3/2.

4.2. Pivot patterns of binary Hadamard matrices. The object of this section is to
demonstrate the unique pivot pattern of a CP binary Hadamardmatrix of order 11, in other
words to show that every equivalent binary Hadamard matrix can have only this pivot pattern
if GE with complete pivoting is applied to it or, equivalently, if GE is performed on a CP
binary Hadamard matrix of order 11.

A naive search performing all possible row and/or column interchanges in order to find
all possible binary Hadamard matrices would require(11!)2 ≈ 1015 trials. Such computer
search would not be completed in reasonable time. In addition, the pivot pattern of each one
of these matrices should be computed. Another obstacle whendealing with orders greater
than 11 is the fact that the pivot pattern is not invariant under equivalence row and/or column
interchanges, i.e., it is possible that equivalent matrices can have different pivot patterns; cf.
Table 4.1. Hence, in order to derive results about pivot patterns one cannot work with a
representative matrix of an equivalence class of binary Hadamard matrices, e.g., the set of
equivalent matrices with same determinant. Thus, one has totake all the possible matrices
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TABLE 4.2
Pivot patterns of binary Hadamard matrices of ordersn = 19, 23, 31, 39

n pivot pattern number

19 (1, 1, 2,32 , 5
3 , 9

5 , 2, . . ., 5
2 , 5

2 , 10
3 , 5

2 , 5, 5, 10) 187

(1, 1, 2,32 , 5
3 , 9

5 , 9
4 , . . ., 25

9 , 3, 5, 5
2 , 5, 5, 10)

(1, 1, 2,32 , 5
3 , 9

5 , 5
2 , . . ., 25

8 , 15
4 , 5, 5

2 , 5, 5, 10)

23 (1, 1, 2, 1,53 , 8
5 , 2, . . ., 3, 3, 4, 3, 6, 6, 12) 228

(1, 1, 2,32 , 5
2 , 9

5 , 3, . . ., 10
3 , 18

5 , 6, 3, 6, 6, 12)

(1, 1, 2,32 , 2, 2, 4,. . ., 15
4 , 9

2 , 6, 3, 6, 6, 12)

31 (1, 1, 2, 1,53 , 8
5 , 2, . . ., 4, 4, 16

3 , 4, 8, 8, 16) 595

(1, 1, 2,32 , 5
3 , 8

5 , 5
2 , . . ., 4, 4, 8, 4, 8, 8, 16)

(1, 1, 2,32 , 2, 2, 3,. . ., 4, 4, 8, 4, 8, 8, 16)

39 (1, 1, 2, 1,53 , 9
5 , 2, . . ., 5, 5, 20

3 , 5, 10, 10, 20) 10000

(1, 1, 2,32 , 5
3 , 9

5 , 2, . . ., 5, 5, 20
3 , 5, 10, 10, 20)

(1, 1, 2,32 , 2, 2, 3,. . ., 25
4 , 15

2 , 10, 5, 10, 10, 20)

into account. We show how the results of Section3 can be used to calculate pivots from the
end of the pivot structure in order to save significant computational time.

First, we give two useful properties for CP matrices.
LEMMA 4.2 ([2], [7, p. 26], [21]). LetA be a CP matrix.
(i) The magnitude of the pivots appearing after application of GE algorithm onA is

given by

pj =
A(j)

A(j − 1)
, j = 1, 2, . . . , n, A(0) = 1. (4.2)

(ii) The maximumj × j leading principal minor ofA, when the firstj − 1 rows and
columns are fixed, isA(j).

THEOREM 4.3. If GE is applied to a CP binary Hadamard matrix of ordern, n > 2, the
last two pivots are (in backward order)n+1

2 and n+1
4 .

Proof. From Lemma3.1 we havedet S ≡ S(n) = 2−n(n + 1)
n+1

2 . Propositions3.4
and3.5, in combination with Lemma4.2(ii), imply that for a CP binary Hadamard matrix it
holdsS(n − 1) = 21−n(n + 1)

n−1

2 andS(n − 2) = 23−n(n + 1)
n−3

2 . By substituting these
values in relation (4.2) and taking into account Lemma3.1, we obtain

pn =
S(n)

S(n − 1)
=

2−n(n + 1)
n+1

2

21−n(n + 1)
n−1

2

=
n + 1

2

and

pn−1 =
S(n − 1)

S(n − 2)
=

21−n(n + 1)
n−1

2

23−n(n + 1)
n−3

2

=
n + 1

4
.



ETNA
Kent State University 
etna@mcs.kent.edu

A TECHNIQUE FOR COMPUTING MINORS OF BINARY HADAMARD MATRICES 65

Considering the interpretation of a binary Hadamard matrixas SBIBD(4t − 1, 2t, t)
we can state that the two last pivots (in backward order) are2t and t. It is interesting to
observe that the respective values for the complementary SBIBD (4t − 1, 2t − 1, t − 1) are
2t and2t [18].

In the remainder of this paper we apply the results of Section3 to calculate(n − j) ×
(n − j), j > 2, minors forn = 11 fixed.

PROPOSITION4.4. If GE is applied to a CP binary Hadamard matrix of order 11, the
third and fourth pivot from the end are3 and 3

2 , respectively.
Proof. Propositions3.8and3.9, in combination with Lemma4.2(ii), yield that for a CP

binary Hadamard matrixS of ordern = 11 it holdsS(n − 3) = 25−n(n + 1)
n−5

2 = 27 and
S(n − 4) = 28−n(n + 1)

n−7

2 = 18. By substituting these values and the general value for
S(n − 2) in relation (4.2), we obtain

pn−2 =
S(n − 2)

S(n − 3)
=

81

27
= 3 and pn−3 =

S(n − 3)

S(n − 4)
=

27

18
=

3

2
.

Next, we illustrate how the values of the minorsS(j), j = 1, . . . , 6, for a CP binary
Hadamard matrix of order 11 can be specified, so that relation(4.2) can be used for the
computation of the first six pivots. First we give the following useful result.

LEMMA 4.5. The maximum absolute value of the determinant of alln×n matrices with
elements 0 and 1 is given in the following table forn = 1, . . . , 6

n 1 2 3 4 5 6

max.det 1 1 2 3 5 9

More information and results on determinants of(0, 1) matrices can be found in [1, 6,
11, 26].

PROPOSITION4.6. LetS be a CP binary Hadamard matrix of order 11. ThenS(1) = 1,
S(2) = 1, S(3) = 2, S(4) = 3, S(5) = 5, andS(6) = 9.

Proof. ConsiderS as the third matrix of the Example1.4, which is a binary Hadamard
matrix of order 11. We observe thatS(1) = 1, S(2) = 1, S(3) = 2, S(4) = 3, S(5) = 5,
andS(6) = 9. These values of the minorsS(j), j = 1, . . . , 6, are the maximum values for
j × j, j = 1, . . . , 6, matrices with elements 0 and 1, as it can be verified by Lemma4.5.

We note that a binary Hadamard matrix of order 11 is unique under equivalence, since
it is derived from a Hadamard matrix of order 12 which is unique under equivalence [25].
Therefore, the matrices with maximum determinants exist inevery binary Hadamard matrix
of order 11, since they have been proved to exist in one. If thematrix is CP, the matrices with
maximum determinants must appear in the upper left corner, according to Lemma4.2 (ii),
and this completes the proof.

PROPOSITION4.7. Let S be a CP binary Hadamard matrix of order 11. Then the first
six pivots ofS are 1, 1, 2,32 , 5

3 , and 9
5 .

Proof. The pivot values in the statement are obtained by substituting appropriately the
results of Proposition4.6 in formula (4.2).

PROPOSITION4.8. If GE with complete pivoting is performed on a binary Hadamard
matrix of order 11 the pivot pattern is(1, 1, 2, 3

2 , 5
3 , 9

5 , 2, 3
2 , 3, 3, 6).

Proof. The first six pivots of a binary Hadamard matrixS are given in Proposition4.7
and the last four pivots in Proposition4.4and Theorem4.3. The seventh pivot can be found
from the property that the determinant of the matrix equals the product of the pivots, i.e.,

det S =
11∏

i=1

pi ⇒ p7 =
det S

∏11
i=1,i 6=7 pi

= 2.
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THEOREM4.9. If GE with complete pivoting is performed on a binary Hadamard matrix
of order 11, i.e., an SBIBD(11, 6, 3), the growth factor is 6.

Proof. Proposition4.8 and equation (4.1) yield the required growth factor, taking into
account that, according to Lemma4.2(ii), the elementa(0)

11 of a CP binary Hadamard matrix
can be only 1.

Following a similar, easier procedure, we can obtain the following pivot patterns as well.
PROPOSITION4.10. If GE with complete pivoting is performed on binary Hadamard

matrices of orders 3 and 7, i.e., SBIBDs(3, 2, 1) and(7, 4, 2), the pivot patterns are(1, 1, 2)
and(1, 1, 2, 1, 2, 2, 4), respectively.

The importance of Theorem4.9 and Proposition4.10 is that they guarantee stability
when solving linear systems with the respective matrices using GE with complete pivoting,
since they have small growth factors (of order 1), and hence they do not allow the existence
of significant roundoff errors.

5. Conclusions.We proposed a technique to calculate all the possible(n − j) × (n −
j) minors of binary Hadamard matrices. This also reveals some properties regarding their
structure. The theoretical idea leads to an algorithm that overcomes the difficulties arising
from the laborious calculations done by hand. Theoretically, the algorithm works for every
pair of valuesn andj. The usefulness of such a method is justified by its application to a
problem of Numerical Linear Algebra, known as the growth problem. The results obtained, in
combination with the extensive numerical experiments, lead to the formulation of the growth
conjecture for binary Hadamard matrices.

An important open problem is whether a method can be found to prove general results
independently of the presence of parameters in the solutionof the linear systems appearing in
the method. Furthermore, it is still not understood why the value(n+1)/4 as (n− 3)th pivot
(cf. Tables4.1and4.2) appears only for binary Hadamard matrices of order 15 obtained from
Hadamard matrices of order 16 belonging to the I-class of equivalence, and specifically only
in one pivot pattern. Finally, the proof of the conjecture for minors of Hadamard matrices,
probably in connection with possible values of determinants of±1 matrices, and the existence
of binary Hadamard matrices for everyn ≡ 3 (mod4) are open problems, too.
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