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A TECHNIQUE FOR COMPUTING MINORS OF BINARY HADAMARD
MATRICES AND APPLICATION TO THE GROWTH PROBLEM  *

CHRISTOS KRAVVARITIST AND MARILENA MITROULI

Abstract. A technique to compute all the possible minors of order j of binary Hadamard matrices with
entries(0, 1) is introduced. The method exploits the properties of suchicestS and also the symmetry and
special block structure appearing when one forms the m&fixD, whereD is a submatrix ofS. Theoretically,
the method works for every pair of valuesandj and provides general analytical formulae. The whole process
can be standardized and implemented as a computer algorithmusEfiginess of such a method is justified by
the application to the growth problem. This study gives alsoenisight into some structural properties of these
matrices and leads to the formulation of the growth conjedurbinary Hadamard matrices.
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1. Introduction.

1.1. Orthogonal matrices and minors. An orthogonal matrix@ of ordern satisfies
QQT = QTQ = I,. By this definition, orthogonal matrices have determinat the
inverse of an orthogonal matrix is its transpose, the prbdéiewo orthogonal matrices is
an orthogonal matrix and they yield the property that thelilaan matrix norm is unitarily
invariant. Therefore it can be proved that they have someitapt numerical properties;
e.g., the product of any matrix with an orthogonal matrixligagys stable (in the sense that
it gives only a small and acceptable error) and orthogorsthilar matrices have the same
eigenvalues.

An interesting generalization of orthogonal matrices is ¢tbncept of generalized nor-
malized orthogonal matrices, as described by the followdiefinition.

DEFINITION 1.1. A matrix A = (a;;) is callednormalizedif max; ; |a;;| = 1. A nor-
malizedn x n matrix A is callednormalized orthogonal AA” = AT A = ¢(A)I,, for some
constantc(A), andgeneralized normalized orthogortld AT = AT A = c(A)(I,, + J,),
whereJ,, denotes the matrix of order whose entries are all ones.

A similar definition was given in4]. These matrices are generalized to within a row
scaling, i.e., the product of such a matrix with its trangpgives a multiple either of the
identity matrix I,, (e.g., Hadamard and weighing matrices) or of the similapkycsal struc-
tured matrix/,, + J,,; €.9., binary Hadamard matrices.

The purpose of this paper is to study the properties of génedanormalized orthogonal
matrices and, in particular, the computation of minors ofalby Hadamard matrices, having
entries(0,1). In general, it is difficult to obtairanalytical formulaefor minors of various
orders for a given arbitrary matrix. A very interesting ie$o computenumericallyall prin-
cipal minors of a matrix, yielding a®(2") algorithm, was presented ia(]. The derivation
of analytical formulae for minors of the orthogonal matsckscussed in this work is possible
due to their special structure and properties.

A Hadamard matrixH of ordern is a matrix with elements:1 satisfying the orthog-
onality relationHH” = HTH = nl,. It can be proved4, 11] that if H is a Hadamard
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matrix of ordern thenn = 1,2 orn = 0(mod4). However, there is still a conjecture that
remains to be settled, on whether Hadamard matrices exisvéyn being a multiple of 4.
For more details on Hadamard matrices the reader can cgBsitt, 22, 25].

TABLE 1.1
Values of minors for Hadamard matrices of general order

minor values of minors

n—1 nn/2—1

n—2 0,2p"/2-2

n—3 0,4n"/2-3

n—4 0,824 16n/2~4

The first known results concerning minors of Hadamard medrigere obtained ir2f]
forthen — 1, n — 2, andn — 3, minors. In [L7] all the possible: — 4 minors of Hadamard
matrices were calculated theoretically by a method thatdednumerical algorithm.

TABLE 1.2
Values of minors for Hadamard matrices of orders 12 and 16

minor values of minors

n—>5 0,16n™%75 32n7/2-5 48pn/2-5

n—=6 0,32n"/276 64n"/2-6 96n"/2-6 128p7/2-6 160n7/2~6

n—"7 0,64n™/277 128n™/2-7 192n"/2=7 256n"/2=7 320n™/277,
384n"/2=T 448n"/27 512n"/27T7 5760277

The general results for the— j minors,j = 1, ..., 4, of Hadamard matrices are summa-
rized in Tablel.1l The values forj = 5,6, 7 have been proved only for = 12 and 16 p(],
due to computational difficulties of the existing methods] are given in Tablé.2. It can be
seen that all the possible values of the- j minors,j = 1,...,7, follow a specific pattern.
This observation constitutes the following open conjexfor the possible values of minors
of Hadamard matrices.

CONJECTUREL.2 (Conjecture for minors of Hadamard matrices). All possible mi-
nors of dimensiorin — j) x (n — j), j > 1, of Hadamard matrices are eithéror

D - n("/2)—j’ for p= 2j_172 . 2j_173 . Qj_l, Lo, 8 Qj_l,
where
52771 = max{det(A)|A € R7*J with entries+ 1}

and the valud is excluded from the cage= 1.

The maximum determinant values féfl matrices are given in Table 3. The study of
the above conjecture is expected to lead to useful resultsecning the possible values of
determinants of:1 matrices, which are not exactly specified even for relagigehall orders
(n = 8). The relevant known results are given i 19].

A binary Hadamard matriXcalled alsoS-matriy is ann x n (0, 1) matrix formed by
taking an(n + 1) x (n+ 1) Hadamard matrix in which the entries in the first row and caium
are+1, changing+1 to 0, and—1 to +1, and deleting the first row and column. Therefore,
n = 3(mod4). A binary Hadamard matrix satisfiesS” = STS = X(n + 1)(I,, + J,)
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TABLE 1.3
Maximum determinants af 1 matrices

n 1 2 3 4 5 6 7
max.det 1 2 4 16 48 160 576

andSJ, = J,S = %(n + 1)J,,. Further information on binary Hadamard matrices, their
applications and related problems can be foun@®,jd®, 22, 25] and in the references therein.

REMARK 1.3. It is important to emphasize that the present work deallg with the
specific binary Hadamard matrices that are obtained frontdines of Hadamard matrices
according to the construction described above. Theseybktadamard matrices are actually
the incidence matrices of symmetric balanced incomplaiekbtlesigns (SBIBDs) with pa-
rameterg4t — 1,2¢,t) [5, 8]. Indeed, ifH is a Hadamard matrix of ordek, then it can be
written in the form

1 ef
m=[ei ]
wheree? = (1,1,...,1) isthel x (4t — 1) vector with elementg. Then the matri>xC' =

1(Ja—1 — A) is the incidence matrix of an SBIBD with parametéts—1, 2¢, ). An SBIBD
with parameterg4t — 1, 2¢, t) is the complement of an SBIBD with parametéts— 1, 2t —

1,t — 1), the incidence matrix of which is constructed?(yl + Jat—1). In [18] values of
minors for various families of1, —1) incidence matrices of SBIBDs were computed and the
growth problem was discussed for them.

ExampPLE 1.4. The following are three binary Hadamard matrices oflsonder:

=

— = O

O = =
—_ O OO
— = O OO
O == OO = =
e e N )
O R O k= O
OO R == =O
_— O O = O

== e R e B )
O OO R HFOFRKFEFEOK
OO RO R PR OO MM
— OO RO RO~ FO
O R R OF,ROFRRKFROO
R O R, OOOO
— O == OOOFO =
OFR R R PR, OFROORO
—_— O, ORFR R EFRRFROOO
R, OO0, OFO

O OO O M M= O =

1.2. Notation and preliminary remarks. Whenever a determinant or minor is men-
tioned in this work, we mean its magnitude, i.e., the abgolalue. The symbolg, and.J,
stand for the identity matrix and the matrix of ordewhose entries are all one, respectively.
Whenever information on the dimension is not essential,rileeés are omitted. We denote
by A(j) the absolute value of the determinant of the j principal submatrix in the upper
left corner of the matrix4, i.e., A(j) is the magnitude of th¢ x j leading principal minor
of A. An m x n matrix having all its entries equal to € R will be denoted byz,,, «,. If
2 consists of more than one terms (exg+= k — 1), then parentheses are used arourtd
avoid confusion.

The notation(x — A\)I + A\J will be frequently used as a compact notation for a matrix
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of the form

KA A

A K A

D U

If it is essential to specify the order of such a matrix, then it will be denoted by, ., =
(k — NI, + AJ,, for instance,

A
Xoxo = [; FJ .

Let yg+1 be the column vectors containing the binary representaifogach integer
B =27 — 1. Define thej x 1 vectorsuy, = yoi 41, k= 1,...,27. We writeU; for all the
matrices withj rows and the appropriate number of columns, in whighoccursu,, times.
Thus,

,31\ ,ﬁi\ if(i /Zﬁ\ Uy Uz ... Ugji—-1_17 Ugj—-1
1.1 1.1 ... 0..0 0.0 11 0 0
1.1 1.1 0..0 0..0 1 1 . 0 0
U, = — _
1.1 1.1 0..0 0..0 1 .. 0 0
1..1 0..0 1..1 0..0 r 0 ... 1 0

The matrixU; is important in this study because it depicts a general f@myj &rbitrary rows
of a binary Hadamard matrix.
EXAMPLE 1.5.

Uy U U3 U4 U5 Ug U7 U8
11 1 1 0 0 0 O
r 1 0 0 1 1 0 O
r 0 1 0 1 0 1 O

Uy U2 U3 Ug U5 U UT U U9 U Ul U2 U3 U4 U5  Ule
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Uy= 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

We provide some useful formulae for two specially struaiumgatrices, which will be

used repeatedly throughout the paper.
LEMMA 1.6.LetA = (k — \)I, + AJ,, wherex and \ are integers. Then,

det A= [+ (v —DA|(k — A" ! (1.1)
and, fork # X, —(v — 1), A is nonsingular with

1
=R i 0 DAL = AL (1.2)

-1
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Equation (..2) is a special case of the Sherman-Morrison form@lagd. 239], which
computes the inverse of a rank-one correction of a nonsamguoiatrix B as

B luwTB-1

B — T —1:B—1 = wr -
( w) + 1—vTB-1y’

whereu, v are vectors and” B~'u # 1. Indeed, we obtainl(2) letting B = (x — \)1,,,
u=-\N11...1Tandv =111 ... 1],

LEMMA 1.7 (Schur determinant formuld§, p. 21]). Let B = [} 2]. If By is
nonsingular, then

det B = det By - det(By — B3B; ' Ba). (1.3)
If B4 is nonsingular, then

det B = det By - det(B; — BaB; ' Bs). (1.4)

The paper is organized as follows. In Sectifthe strategy to compute all the possible
n — j minors of binary normalized orthogonal matrices is outling Section3, we provide
some useful lemmas and results concerning minors of binagakhard matrices as well
as an algorithm suited for this purpose. In Sectigrihe growth problem is described in
general, the growth conjecture for binary Hadamard magrisdormulated and information
about pivot patterns of binary Hadamard matrices is givémalfy, Section5 summarizes the
results of this work and highlights further improvementd aossible extensions.

2. The numerical technique for the evaluation of minors. In this section, we present
the technique we propose to calculate all the posgible j) x (n — j) minors of binary
normalized orthogonal matrices of ordelin a general context. However, it can be better
understood through the theoretical proofs and the algarghSection3.

In order to compute all the possibl@ — j) x (n — j) minors of a binary Hadamard
matrix.S, we write it in the form

| MU
S‘{V]«T D}’

where M and D are square matrices of ordefsandn — j, respectively. The purpose is
to compute, for every possible upper Igfik j submatrix/, the values of the determinant
of D, which is actually the required minor. The submatribf;andeT contain all possible
jx(n—j) columns andn—j) x j rows, respectively, which can appeardnso they must be
created very carefully according to the propertie§ oAlthough, with appropriate row and/or
column interchanges and, if necessary, with multiplicatioy —1, it is possible to achieve
U; = V; for some binary Hadamard matrices, in general it is not. Veiy important that the
same columns are clustered togethevjnas in Sectiori.2 In this manner, the computation
is simplified by the block form, and the derivation of anadgtiformulae is possible.

From the order of9, the inner products of its first rows and, if necessary, the total
number of ones and zeros in the figstows of S, we set up and solve a system whose
unknowns are the numbers of columndgf If an exact solution can be found (i.e., there are
no parameters in the solution), the method provides a gefeeraula. If some parameters
exist in the solution, we must determine upper bounds (ddipgronn) that give all feasible
values for the parameters. Thus, in this case the resulhailbe general, but dependent on
n.
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Afterwards, the matrixD” D (or equivalentlyDD™) is evaluated taking into account
thatSTS = SST = L(n+1)(1, + J,), and the result is written appropriately in block form.
The sizes of the blocks are known since they correspond tedhdion of the system of
equations described above. Finally, we aim at derivisgD” D by successive applications
of formula (1.3) or (1.4), with the help of .1) and (L.2).

Due to the properties &, all diagonal blocks oD” D are of the form(a —b)I +b.J and
each of the remaining blocks consists only of a constanto Al¥" D is always symmetric.
These properties are always taken into account during timpetations, so that every matrix
multiplication, inversion and determinant evaluation @& performed explicitly, but in an
efficient manner with the help oL (1)—(1.4).

It is important to emphasize that the proposed method kesilall the possiblén —

j) x (n — 7) minors. The selected rows, which are written as the finsiws of A, do not
necessarily appear there, but can be located anywhere mdtré<. They can be moved to
the first rows with appropriate row and/or column interchesigWe write them at the top
only for the sake of better presentation and without any édggenerality. The fact that we
examineall the possible upper left x j submatriceguarantees that with this technique we
calculateall the possiblgn — j) x (n — j) minors ofA and that we don’t miss any of their
values.

It is also important to stress that the method can be veryyeasidified to work for
Hadamard matrices as well. We believe it is sensible to ptas¢hrough the example of
binary Hadamard matrices, which represents a comprelebsity not extensive range of
calculations and yields new results.

The method can be implemented symbolically in a computetabysystem, like Maple,
which guarantees the accuracy of the results avoiding mffiecrors, and preserves analyti-
cal formulae.

3. Main results. In this section, we prove theoretical formulae for the- 5 minors,
j = 1,2,3,4, of binary Hadamard matrices. We explain why the proof ofitsfor j > 2
is more complicated and why it can be carried out with thisitégque only for specific, fixed
values ofn. First we give the following, almost straightforward, lemmThroughout this
section, we set := 1(n +1).

LEMMA 3.1.The determinant of a binary Hadamard matsof ordern is

n+1

27"n+1)=2 .
Proof. From the definition o5 we have
2
1

1
SST = k(I + Jo) =k 2 = k[(2 = 1), + J.).

Equation (.1) gives

(n+1)ntt

det SST = k"[2+ (n— 1)) =k"(n+1) = I

Sincedet SST = (det S)?, we have

n+1
2
)

|det S| =2""(n+1)
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which proves the resulf]
REMARK 3.2. Lemma3.1can also be proved by using the explicit connection between
a Hadamard matri¥{ of ordern + 1 and a binary Hadamard matrof ordern, namely

0 0
H = dni = {0 —25} '

To this end, we may use the invertibility of anyx n submatrix ofH, since all such minors
are nonzero (cf. Tablg.1); this idea does not seem to be applicable to derive mordtsesu
minors ofS, since invertibility cannot be guaranteed for submatrifed of smaller order.

Before proceeding to further computations, we need theviatig result, which gives the
number of ones and zeros in every row and column of a binarakiadd matrix.

LEmMA 3.3. Every row and every column of a binary Hadamard mafiof ordern
has™f! ones and*;* zeros.

Proof. The result is derived from the propey/,, = J,,S = %(n + 1)J,,, which shows
that the sum of the entries of every row and column of a binaagatinard matrix ig“g—l,
considering that the entries of the matrix are only (CC1L).

PROPOSITION3.4. Let S be a binary Hadamard matrix of order. Then all the possible
(n—1) x (n — 1) minors ofS are2'~"(n + 1)"z".

Proof. SinceS is a binary Hadamard matrix of order it can be written in one of the
following two forms:

r (n—1)/2 (n—=1)/2 7 r (n+1)/2 (n=3)/2 17
—— —— —
11 ...1 0...0 Oj1...1 0...0
1 1
S = or : ;

1 A 1 A’
0 0

L O _ L O _

where the first columns contain the appropriate number of and zeros below the horizontal
line, so that they hav&+! ones and;* zeros.

From the definition o, ST'S = k(I,, + J,,), it follows that the(n — 1) x (n — 1) matrix
AT A has the form

T, | A1 A
AA_|:A2 Az |’

where
Ay =12k =1 —(k=D)Lacr 4 (k—1)Jnos,
Ay =kJn-1, 2 2
As = (2k - k) oy + kJos.
From (L.4) we have
det AT A = det Az - det(A; — Ay A3 Ay), (3.1)

while equation {.1) gives

n+1

det A3 =2""(n+1)"2 . (3.2)
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With the help of (.2) we obtain

1
= T < - n—1 — n—
A= {[(n 1) + 2 0 2JT1},
and careful calculations give
_ 1
Ay = ApAy A = 5 {[(n — 1)+ 2/Las — 2JHT71} .

Equation (..1) yields
det(A; — Ay A5 Ay) = 22" (n +1)"2 (3.3)
and substituting3.2) and @.3) in (3.1) we obtaindet AT A = 2272"(n 4 1)"~!, so that
|det A = 2" (n+ 1) .

It is now obvious that we obtain the same valueder A, independently from the possi-
ble position ofA insideS, if S is compelled to be in the first possible form. Working simjlar
for the second possible form éfyields the same result felet A’. Hence, we conclude that
all the possiblén — 1) x (n — 1) minors ofS are of magnitude!~"(n + 1)"z .0

PROPOSITION3.5. Let S be a binary Hadamard matrix of order, n > 2. Then all the
possible(n — 2) x (n — 2) minors ofS are 0 or23—"(n + 1)%.

Proof. There are2=16 possible cases for the upper I2ftc 2 corner ofS, since the
possible entries are 0 and 1. The proof is illustrated forroa&ix, as the other cases can be
handled in a similar fashion. Sin¢eis ann x n binary Hadamard matrix, we suppose that it
can be written in the following form:

r u v T Y ]
1 1|1 ...1 1 ...1 0...0 O...
1 0(1...1 0...0 1 1 0 ...0
1 1
1 1
1 0

S = :
1 0 B
0 1
0 1
0 O
L0 O |

From the order of the matrig, the inner product of its first two rows and the total number of
zeros in the first two rows (according to Lemi3&), we obtain the following system of four
equations

ut+v+r+y=n-—2
u= !
n—1

TrY =Ty
1+v+y="7*1
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which has the exact solution
1
(u,v,2,y) = E(n— 3,n—3,n+1,n—3).

According to the properties of anx n binary Hadamard matrix, the, — 2) x (n — 2)
matrix B” B has the form

Bluxu ‘ (k - 1)u><'u (k - 1)u><a: kuxy

BTB: (k* 1)v><u Bvau kvxz kvxy — Blu><u F
(k - ]-)zxu kazxv B21:><z kazxy - FT G ’
kyxu kyxv ky><:1: B3y><y
where
By =[(2k—-2)— (k—=2)|I+ (k—2)J,
By =[(2k—1)— (k=D + (k—1)J,
Bs = (2k — k)T + kJ.
Thus, according tol(3),
det BT B = det By, - det(G — FT By} F). (3.4)
From (L.1) we have
1\ %
det By = g(nQ—Gn—&-Q’é) <”+ ) (n+1)"% (3.5)
and from (.2) By}, = (k1 — A\)I, + A1 J,, where
4(n% — 10n + 53) 16(n —7)

ky = and )\ =

(n —1)(n? — 6n + 25) (n—1)(n%2 —6n+25)

Hence,

_ K N.
T 1 _ luxv 2
G F BluXuF - |: N2T ]\/'1 :| ’

where the blockd ,..,,, N1, andN, are calculated. For the sake of brevity and clarity of pre-
sentation, we refrain from stating explicitly the form ofiatermediate matrices analytically;
however they are available from the authors on request.

From (1.3) we have

det(G — FTBy L F) = det Ky, - det(N; — NI K} Ny). (3.6)

From this point on, the idea of the proof is to apply conseelyiformula (L.3) for the block
matrices appearing, and carry out the calculations witthéip of (1.1) and (L.2).

Proceeding similarly as above, we calculdte K, ., anddet(N; — NJ K} No)
making use of1.1), (1.2), and (.3). We have

det Klvxv =

2v/2(n3 — n% — 5n + 61) <n+1

% 7
-4 3.7
nZ — 6n + 25 4 > (n+1)7 3.7)
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and
- Pioxo @
Ny — NI K1 oNo = A
2 vx Q? P2y><y

where the blocks? ; ., @1, and P, «, are obtained as described.
According to (.3),

det(N1 — N2TK1;X1UN2) = det Plxxa: det(ngXy — Q?PlxxmilQl)- (38)

From (1.1) and (L.2) we have

w13

2v2(n + 1) (n? — 2n + 13)(2

)

det Piyxy = 3.9
o L n3 —n? —5n+ 61 (3.9)
and
PQyXy_Q,{leXa:_lQl :RSyXy7 (310)
WhereRsyxy = (ka — M)y + Aoy, by = 051025 and )y = — =208,
Equation (..1) gives
sf(n+ 1)7 (%)
= . 311
dCthyXy _2n+13 ( )
Finally, from 3.4)—(3.11) we have
det BT B = det Eyxy det K1y, det Piyx, det Rsyx,
A" _ 3
(n+1)3 (n+1)
Hence,det B| = 2> "(n+1)"% * . Similarly, we handle all the possible remaining cases for

the upper left hand corner and obtain the same result andatbe 0.0
The following two lemmas specify the possible number of nuis of a binary Hadamard
matrix if only few rows of it are considered. They are usetutarry out proofs like that of
Proposition3.5 for (n — j) x (n — j) minors,j > 2. In such cases, the linear systems
occurring from the properties of binary Hadamard matricegain parameters and cannot be
solved exactly. Lemma.7 can be used to establish bounds for the parameters in thésslu
of the systems, which actually represent columns of a bikEgamard matrix, if the first
rows are considered separately. Hence, there exist coristom the number of columns of
a binary Hadamard matrix, which moreover limit the caldolas of the proposed technique.
Since the upper bounds for the parameters are dependang ondiérn, we cannot provide
general results in these cases, but only for specific values o
LEMMA 3.6. Let S be a binary Hadamard matrix of ordet, n > 2. Then for every
triple of rows ofS the number of columns which are
@ (1,1,1)7 or (0,0,0)" is (n — 3)/4,
(b) (1,1,0) or (0,0,1)7 is (n+ 1)/4,
(c) (1,0,1)T or (0,1, O)T is (n+1)/4,
(d) (1,0,0)7 or (0,1,1)T is (n + 1) /4.

) ) ) )
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Proof. Three rows of the binary Hadamard mattixcan be written as

—— — —— T N N

1 1 1 1...1 0...0 O 0 0 0 0...0
1 1 1 1 0 0O 0...0 1 ...1 1 1 0 0 0 ... 0"
1. 1 0 1 1 0 ...0 1 .10 0 1 1 0 ...0

From the order of the matri&, the inner product of its first three rows and the total nunaber
ones and zeros in the first three rows (according to Lerdrgave get the following system
of ten equations

Uy + U +uz + ug + us + ug + Uy +ug =n
ul+u2:nil

ul+u3:nil

U1+U5=L1_1
Uy + U +uz + ug = —5—
us + ug + uy + ug =
Uy + ug + us + ug =
Uz + Ug + uy + ug = —5—
Uy + us + us + uy =
U + Ug + Ug + ug =

3
Tt
u

S
—

3
o
-

R

S
—

3
o
-

K
—

‘ 3
N

which has the solution

From the solution we see that

u1+u8:n237
U2+U7=U3+U6=U4+U5=Lf,

and the result follows immediately.

LEMMA 3.7. Let S be a binary Hadamard matrix of order, n > 2. For all the 2/
possible columnay, ..., uy; of S (or U;) included in the firsy rows,j > 3, it holds

0<ui§”T_3, ie{l,.... 2 2 U{-2+1,...,27}

n+1

0<u
S U 1

IN

, otherwise.

Proof. If we consider separately the first three rows from the finrsiws mentioned in
the statement of the lemma, we observe forzhpossible columns; of U;, i = 1,...,27,
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that
u;(1:3) uiy(1:3) (1,1,1)T
Uiy y1(1:3) = = uzy,(1:3) = (1,1,0)7
Uzyyq(1:3) = = ugy(1:3) = (1,0,1)7
Usyip(1:3) = = uiy(1:3) = (1,0,0)7
Uiyq(1:3) = = usy(1:3) = (0,1,1)7
Usyiy(1:3) = = ugy,(1:3) = (0,1,0)7
Ugyyq(1:3) = = uzy(1:3) = (0,0,1)7
Uzy4q(1:3) usy;(1:3) (0,0,0)

whereu; (1 : 3) denotes the first three entries (using Matlab notation)@ttiumnu, of U;.
This observation arises easily from a combinatorial cawnénd can also be verified on the
matriceslUs andU, given in Sectiori.2

From Lemma3.6 we conclude

U + + Uiy, + Uzoiyy + +  Usoy; ”T*B
Ulgipr + + uzy + usgi4y t ouzy = ntd
U295 41 + + U3o; + U595 41 + + Usy; = ’ni—l
Usgipr + RECE VY ORI + Uz nl,

The result follows immediately from these relations, byitgkinto account that,; > 0, as
they denote numbers of columiis.

In addition, another difficulty in calculating: — j) x (n — j) minors,j > 2, arises from
the fact that we have to examigé’ possible upper left corners, which are singled out from
the general form of rows of a binary Hadamard matrix, denoted#y. This observation,
in combination with the fact that the computations in thegfsof Propositions.4 and3.5
follow a standard procedure based on the successive attisaf formula (.3) or (1.4),
led us to develop this technique from an algorithmic pointiefv. Thus, we constructed the
following Minors Algorithm with the intent of calculating all the possikle — j) x (n — j)
minors,j > 1, of binary Hadamard matrices.

The implementation on a computer algebra package takepasawnery possible upper
left submatrix. For each one of them, the necessary conipnsadre performed symbolically.
The Minors Algorithm can be applied theoretically for eveslue ofn andj. Lemma3.7
is used for finding the possible values of the parametersaiistfutions of the linear systems
appearing at step 2. The symdgl stands for all the possible columns with entries 0 and 1,
like U;; we choose a different notation in order to show that the icestf/; andV; are not
necessarily the same.

The Minors Algorithm
Input: All possiblej x j matricesM, which can exist in the upper left corner

of ann x n binary Hadamard matrig = {% %]
J
Output: Absolute values of all the possible — j) x (n — j) minors ofS.
FOR EVERYmMatrix M _
Step 1: FORMthe system of + (}) + 2j equations an@’ unknownsu; that
results from counting the columns, the inner products ofyetxgo
distinct rows of the matrix)/ U;] and the total number of ones and zeros
in every row of[Al Uj].
Step 2: SOLVEthe system for alls;.
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FORall the parameters attaining the valukes. ., an3 or "T“
Step 3: IF u; > 0 andu; is aninteger; = 1,...,2J

DTD= {El Fl}

Fr' Gy
_ E, F
Gy — FTE'F, = |:F§ 6’22]
ELSEthere are no acceptable solutions
END IF
Step 4: FORk =2,...,27 —2

E B
Gy — FIE'F, = [0 0!

* FER R {FEH Gry1
END

Step 5: By = Gai_y — FE B Foiy
2j

Step 6: det D" D := [] det E;, |det D| = V/det DD

i=1
END {for all the parameters
END {for every matrixM }

PROPOSITION3.8. Let .S be a binary Hadamard matrix of order = 11. Then all
possible(n — 3) x (n — 3) minors of the matrixS are 0 or2°="(n 4 1)"7 .
Proof. The idea is similar to the proof of Propositi@rb. .S is written in the form

[ MU
=l 5

and all the2? = 512 possible3 x 3 upper left corners/f are taken as input for the Minors
Algorithm. The familiar properties of lead to a linear system which has the same left hand
side as the system in the proof of Lem@&, but different right hand sides, according to the
upper left hand corner selected fdf. The solutionsu, ..., ug, representing the numbers
of columns ofS are expressed in terms of the parametgrwhich is allowed to take the
values0, 1, 2, according to Lemma&.7. For the acceptable solutions having positive integer
components, the rest of the procedure of the Minors Algoritk carried out in order to
specify the determinant dp for each)M . For instance, at Step 3 of the algorithm the matrix
D™ D has the form

B,k ke ky ke By ki k]

Fa S U S S A

F ok ok k kK

. G k ok k k
DD = F ok ok k|
G ko k

Gk

L H_

wherek = 2t k) =k — 1,k =k —2, By = kI, + (k —3)Ju,, F = kI + (k —2)J,
G =kI+ (k—1)JandH = kI + kJ. The diagonal block#,, ', F,... G, H, are of
known ordersu; x wui, us X us,...,us X ug. The elements, kq, ko, represent blocks of
appropriate sizes (according to the notation introduce®ictionl.2), but the subscripts are
omitted for a more compact presentation. From now on, theeseme of matrice€’y,, Fy,
G, k=2,...,8, results from Steps 4 and 5 of the Minors Algorithm. For theesat brevity
we do not describe all the matrices explicifly.
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By applying the Minors Algorithm fon = 11 andj = 4, the following result is derived.
PrROPOSITION3.9. Let S be a binary Hadamard matrix of ordet = 11. Then all
possible(n — 4) x (n — 4) minors ofS are 0,27~"(n + 1)*=" or 28-"(n + 1)

n—"7
2.,

4. Application to the growth problem.

4.1. Description of the problem. The backward error analysis for Gaussian elimina-
tion (GE) on a matrixA = (aE?)) is traditionally expressed in terms of tgeowth factor
max; j i \al(f)\

O)| ’

g(n, A) = (
max; j [a;;
which involves all the eIementsgf), k=0,1,2,...,n — 1, that occur during the elimina-
tion [3, 13, 24]. Matrices with the property that no row and column exchange needed
during GE with complete pivoting are calledmpletely pivotedCP) or feasible. For a CP
matrix A we have

A) = max{pi,pz2,---,Pn}
- (0)
layy’|

g(n, , (4.1)

wherepy, ps, .. ., p, are the pivots ofd. According to known theorems3[ 24], it is clear
that the stability of GE depends on the growth factog(l, A) is of order 1, the elimination
process is stable. i(n, A) is larger, we must expect instability. The study of the value
assumed by(n, A), and the specification of pivot patterns, are referred tthasgrowth
problem

In [2] Cryer conjectured that “for real matricg$n, A) < n, with equality if and only
if A is a Hadamard matrix”. This conjecture became one of the faasbus open problems
in Numerical Analysis and has been investigated since tlyemdny mathematicians. The
inequality was finally shown to be false i8]] however its second part is still an open problem.

Since binary Hadamard matrices are connected with Hadamatrices, it is sensible to
apply GE with complete pivoting on equivalent (i.e., ob&drby row and/or column inter-
changes) binary Hadamard matrices of various orders are gaivn their pivot patterns and
growth factors.

Tables4.1 and 4.2 show some pivot patterns which appear if GE with complete piv
oting is applied, experimentally, to 200000 equivalentabjnHadamard matrices for each
ordern = 15, 19,23, 31, and 39. The last column gives the total number of pivot paste
that appeared in the experiments. Especiallyrfo= 15, the binary Hadamard matrices
are obtained separately from Hadamard matrices of ordewh&h are classified in five
equivalence classes |,11,...,V, se&9]. It is interesting to mention that the total numbers of
pivot patterns observed experimentally for Hadamard mesrof order 16 from the equiva-
lence classes I,lI,...,V, are 9,15,10,12,12, respegtiv@h the contrary, fon > 15 the total
numbers of pivot patterns of binary Hadamard matrices aafgiantly fewer than the ones
obtained from the corresponding Hadamard matrices; 88e The (» — 3)th pivot, i.e., the
fourth counting from the last pivot, is alwayﬁ%l, except for binary Hadamard matrices of
order 15 obtained from the I-equivalence class of Hadamattices of order 16. Finally, it
is interesting to compare the pivot patterns of Hadamardoamaty Hadamard matrices. We
observe (cf. 16]) that with the exception of the first pivot, which is in bothses always 1,
the pivots of binary Hadamard matrices are about one half@ptvots of the corresponding
Hadamard matrices, and consequently the growth factottsadwed, as well. This fact points
out the significance for Gaussian elimination of inserting entry 0 in binary Hadamard
matrices instead of the entryl of Hadamard matrices.
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TABLE 4.1
Pivot patterns of binary Hadamard matrices of order= 15

class pivot pattern number
| (1,1,2,1,5,1,2,1,2,28,2,4,4,8) 12
4 8
1,1, 2, 1,3,2 3,1,223,2,4,4,8)
(1,1,2,2,41,2,2,2,2,4,4,4,4,8)

12131

o (1,1,2,1,3,
(1,1,2,15,8,
(1,1,2,15,

,1,2,28,2,4,4,8) 15
4,2,2,8,2,4,4,8)
2.2,

2,4,4,8)

130

2121

cﬂ\@ oﬂ@ ow\c:
LSS N

1 1,1,2, 1,3,
(1 1 2 1131 13

5 9 8
(11 11 21 11313121312 2131

2,4,4,8) 18
2,4,4,8)
2,4,4,8)

\u: Uv\«:

12,1,2,25,
,2,1,2,28

VNV (1,1,2,1,5,2,2,1,2,25,2,4,4,8) 16

(1,1,2,12,2,2,2,2,2,8,2,4,4,8)

(1,1,2,1,3,2,2,2,20, 128 5 4 4.8)

These numerical experiments, in combination with the thical results of Sectiof,
lead to the following new conjecture.

CONJECTURE4.1 (Growth conjecture for binary Hadamard matrices). Let S be a
binary Hadamard matrix of ordet.. Reduces by GE with complete pivoting. Then, for large
enoughn,

() g(n,S) =3~

(i) Every pivot before the last has magnitude at m@%‘%;

(iii) The three last pivots are (in backward orde®f*, =, ntl:

(iv) The @ — 3)th pivot can be or 2+

(v) The first three pivots are equal to 2, 2, the fourth can take the valudsor 3/2.

4.2. Pivot patterns of binary Hadamard matrices. The object of this section is to
demonstrate the unique pivot pattern of a CP binary Hadamaitdx of order 11, in other
words to show that every equivalent binary Hadamard magnixitave only this pivot pattern
if GE with complete pivoting is applied to it or, equivalentif GE is performed on a CP
binary Hadamard matrix of order 11.

A naive search performing all possible row and/or columericthanges in order to find
all possible binary Hadamard matrices would require!)? ~ 10%° trials. Such computer
search would not be completed in reasonable time. In additi® pivot pattern of each one
of these matrices should be computed. Another obstacle wbaling with orders greater
than 11 is the fact that the pivot pattern is not invariantarretjuivalence row and/or column
interchanges, i.e., it is possible that equivalent madrazn have different pivot patterns; cf.
Table 4.1 Hence, in order to derive results about pivot patterns @reat work with a
representative matrix of an equivalence class of binaryarsdd matrices, e.g., the set of
equivalent matrices with same determinant. Thus, one htakall the possible matrices
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TABLE 4.2
Pivot patterns of binary Hadamard matrices of orders= 19, 23, 31, 39

n pivot pattern number

19 (1,1,23,2,2,2,...,5,5,2,5,5,5,10) 187
1,1,2%,2,2,9,...,%,3,53,5,5,10)
(1,1,23,5,2,5,.. ,285, 12,5,2,5,5,10)

23 (1,1,2,13,8,2,...,3,3,4,3,6,6,12) 228
1,1,22,2,2,3,...,10,156,3,6,6,12)
(1,1,23,2,2,4,...,12,5,6,3,6,6,12)

31 (1,1,2,15,8,2,...,4,4,15,4,8,8,16) 595
(1,1,2,2,2,8,5,...,4,4,8,4,8,8,16)

(1,1,2,2,2,2,3,...,4,4,8,4,8,8,16)

19

39 (1121

1730

. 5,5,22, 5,10, 10, 20)

1,1, 23 2,2,3,.., 2, 15 10,5, 10, 10, 20)

191 14 9

,2,...,5,5,205,10, 10, 20) 10000
, 2,.

into account. We show how the results of Sectioran be used to calculate pivots from the
end of the pivot structure in order to save significant corapomal time.
First, we give two useful properties for CP matrices.
LEMMA 4.2 ([2], [7, p. 26], [21]). Let A be a CP matrix.
(i) The magnitude of the pivots appearing after application &f &gorithm onA is
given by

A(J)

P= TG 2T j=1,2,....n, A(0)=1. (4.2)

(i) The maximumny x j leading principal minor of4, when the firstj — 1 rows and
columns are fixed, igl(j).

THEOREM4.3.If GE is applied to a CP binary Hadamard matrix of ordern > 2, the
last two pivots are (in backward ordef:* and 2.

Proof. From Lemma3.1we havedet S = S(n) = 27"(n + 1)"=" . Propositions3.4
and3.5, in combination with Lemma 2 (i), imply that for a CP binary Hadamard matrix it
holdsS(n — 1) = 2!="(n+ 1)"z" andS(n — 2) = 23-"(n + 1)“z". By substituting these
values in relation4.2) and taking into account Lemntal, we obtain

Dy = S(n) 27" (n+1)" % n+1
TSn-1)  2ten(n41)"F 2

and

Sn—1) 2'"(n+ 1"  n+1
Pn—1 = = T3 — .0
S(n—2)  23-n(n41)"z 4
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Considering the interpretation of a binary Hadamard masxSBIBD (4¢ — 1, 2t,t)
we can state that the two last pivots (in backward order)2arandt. It is interesting to
observe that the respective values for the complementatlB3B4t — 1,2t — 1,¢ — 1) are
2t and2t [18].

In the remainder of this paper we apply the results of Se&itmcalculate(n — j) x
(n—j7), 7 > 2, minors forn = 11 fixed.

PrRoOPOSITION4.4. If GE is applied to a CP binary Hadamard matrix of order 11, the
third and fourth pivot from the end ateand % respectively.

Proof. Propositions3.8and3.9, in combination with Lemmd.2 (i), yield that for a CP
binary Hadamard matri$ of ordern = 11 it holds S(n — 3) = 25~"(n + 1)’%5 =27 and
S(n—4) = 25-"(n + 1)"z" = 18. By substituting these values and the general value for
S(n —2)in relation @.2), we obtain

S(n—2) 81 S(n—3) 27 3

n—2 — 5, o\ — o — 3 and n—-3 — &, N~ — T — <.

Pn=2 =g —3) ~ 27 Pn=3 =g —4) " 18 2
Next, we illustrate how the values of the mina¥§j), j = 1,...,6, for a CP binary

Hadamard matrix of order 11 can be specified, so that relgtd?) can be used for the
computation of the first six pivots. First we give the follmgiuseful result.

LEMMA 4.5. The maximum absolute value of the determinant of alln matrices with
elements 0 and 1 is given in the following tablefoe 1,...,6

n 1 2 3 4 5 6

max.det 1 1 2 3 5 9

More information and results on determinants(@f1) matrices can be found irl]6,
11, 26].

PROPOSITION4.6. LetS be a CP binary Hadamard matrix of order 11. Th&fl) = 1,
S(2)=1,5(3)=2,54)=3,5(5) =5,andS(6) = 9.

Proof. ConsiderS as the third matrix of the Example4, which is a binary Hadamard
matrix of order 11. We observe thd{1) = 1, S(2) = 1, S(3) = 2, S(4) = 3, S(5) = 5,
andS(6) = 9. These values of the mino&(j), j = 1,...,6, are the maximum values for
jxj,5=1,...,6, matrices with elements 0 and 1, as it can be verified by Leduha

We note that a binary Hadamard matrix of order 11 is uniquesueduivalence, since
it is derived from a Hadamard matrix of order 12 which is usiqunder equivalence?p).
Therefore, the matrices with maximum determinants existvery binary Hadamard matrix
of order 11, since they have been proved to exist in one. lfithgix is CP, the matrices with
maximum determinants must appear in the upper left cormenrding to Lemmat.2 (i),
and this completes the prodf.

PROPOSITION4.7. Let S be a CP binary Hadamard matrix of order 11. Then the first
six pivots ofS are 1, 1, 2,3, 2, and 2.

Proof. The pivot values in the statement are obtained by sulistit@ppropriately the
results of Propositiod.6in formula @.2). 0

PrRoOPOSITION4.8. If GE with complete pivoting is performed on a binary Hadadhar
matrix of order 11 the pivot pattern ig, 1,2, 3, 3, 2,2, 2,3,3,6).

Proof. The first six pivots of a binary Hadamard matSxare given in Propositiod.7
and the last four pivots in Propositiagn4 and Theorend.3. The seventh pivot can be found
from the property that the determinant of the matrix equadsproduct of the pivots, i.e.,

det S

117 = 2. D
Hi:Li;ﬁ?pi

11
det S = Hpi = pr=
i=1
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THEOREM4.9. If GE with complete pivoting is performed on a binary Hadadharatrix
of order 11, i.e., an SBIBID11, 6, 3), the growth factor is 6.

Proof. Proposition4.8 and equation4.1) yield the required growth factor, taking into
account that, according to Lemmnd& (i), the elemenuﬁ) of a CP binary Hadamard matrix
can be only 10

Following a similar, easier procedure, we can obtain thiefohg pivot patterns as well.

PrRoOPOSITION4.10. If GE with complete pivoting is performed on binary Hadamard
matrices of orders 3 and 7, i.e., SBIBDs 2, 1) and (7, 4, 2), the pivot patterns arél, 1, 2)
and(1,1,2,1,2,2,4), respectively.

The importance of Theorem.9 and Propositior4.10 is that they guarantee stability
when solving linear systems with the respective matricésguSE with complete pivoting,
since they have small growth factors (of order 1), and heheg tlo not allow the existence
of significant roundoff errors.

5. Conclusions. We proposed a technique to calculate all the posgible j) x (n —

j) minors of binary Hadamard matrices. This also reveals sompepties regarding their
structure. The theoretical idea leads to an algorithm thatammes the difficulties arising
from the laborious calculations done by hand. Theoreticttle algorithm works for every
pair of valuesn andj. The usefulness of such a method is justified by its apptioatd a
problem of Numerical Linear Algebra, known as the growthabean. The results obtained, in
combination with the extensive numerical experimentg] tecthe formulation of the growth
conjecture for binary Hadamard matrices.

An important open problem is whether a method can be founddeepgeneral results
independently of the presence of parameters in the solafitire linear systems appearing in
the method. Furthermore, it is still not understood why thkei@(n + 1) /4 as @ — 3)th pivot
(cf. Tables4.1and4.2) appears only for binary Hadamard matrices of order 15 nbthfrom
Hadamard matrices of order 16 belonging to the I-class ofvatgnce, and specifically only
in one pivot pattern. Finally, the proof of the conjecture fianors of Hadamard matrices,
probably in connection with possible values of determisai-1 matrices, and the existence
of binary Hadamard matrices for evety= 3 (mod4) are open problems, too.
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