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THE RCWA METHOD - A CASE STUDY WITH OPEN QUESTIONS AND
PERSPECTIVES OF ALGEBRAIC COMPUTATIONS ∗

JOHN J. HENCH† AND ZDENĚK STRAKOŠ‡

Abstract. Diffraction of light on periodic media represents an important problem with numerous physical and
engineering applications. The Rigorous Coupled Wave Analysis (RCWA) method assumes a specific form of grat-
ings which enables a straightforward separation of space variables. Using Fourier expansions, the solutions of the
resulting systems of ordinary differential equations for the Fourier amplitudes can be written, after truncation, in
form of matrix functions, with an elegant formulation of the linear algebraic problem for integrating constants. In
this paper, we present a derivation of the RCWA method, formulate open questions which still need to be addressed,
and discuss perspectives of efficient solution of the related highly structured linear algebraic problems. A detailed un-
derstanding of the RCWA method for the two-dimensional grating is, in our opinion, necessary for the development
of a successful generalization of the method to practical problems.

Key words. Diffraction of electromagnetic waves, Maxwell’s equations, periodic gratings, RCWA, truncated
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1. Introduction. There are many methods for the numerical modeling of the diffraction
of electromagnetic waves on periodic gratings. Among those, a specific role is played by
the so called Rigorous Coupled Wave Analysis (RCWA) method,which in its most basic
two-dimensional form assumes very simple rectangular gratings. The history of the RCWA
and related methods is given in the standard monograph [9], together with the description
of fundamentals of the differential theory of gratings and several generalizations that can
be applied to solving practical problems, see also the corresponding parts and references
in [2, 6, 7, 8].

The simple rectangular form of a grating allows in RCWA an easy separation of space
variables, and, using Fourier expansions for the space periodic part of the solution, a trans-
formation of the problem described by the partial differential equations into the system of
ordinary differential equations (ODE) for the Fourier amplitudes. In order to solve the prob-
lem numerically, the infinite dimensional continuous problem must be discretized. In RCWA
this entails the truncation of the Fourier expansions, followed by a derivation of the finite di-
mensional representation of the problem. The solution of the resulting ODEs can be written
in the form of elementary matrix functions with an elegant matrix formulation of the linear
algebraic problems for the integrating constants.

Obviously, one should ask whether the solution of the discretized problem approximates
to sufficient accuracy (in an appropriate sense) the solution of the original problem, which
requires mathematical justification by rigorous analysis.The derivation of RCWA assumes
smooth functions. In order to get a good agreement of the computed results with the physical
reality in modeling the idealized surfaces of discontinuity (see [13, Chapter 9]), it is neces-
sary to use truncation rules whichin the limit remain valid in the presence of discontinuities.
A step in this direction was taken by Li [6, 7], who proved convergence results for a particular
truncation of the multiplied Fourier expansions, which ledto the so called fast Fourier meth-
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ods1, for their good performance in practical computations. Whatis even more important, Li
proved that the discretizations that led to slow numerical computations are incorrect and the
related discretization errors are responsible for the poorperformance of the whole method
observed in practice. This gives an illustrative example ofa mathematical theory which not
only justifies the intuitively derived results, but which also shows that intuition can, in an un-
fortunate case, mislead in the derivation of methods and algorithms in scientific computing.
Without proper mathematical proofs to justify the choice ofdiscretizations, wrong intuitive
arguments can lead to algorithmic variations which are inefficient and inaccurate, wasting
time and effort. Although the RCWA method has been used in practical computations for
more than a decade, its mathematical justification has not been fully completed yet.

In our text, we present a derivation of the RCWA method for a simple two-dimensional
rectangular grating. The simplicity of the grating model allows us to see more clearly the
interconnections between the physical model with its assumptions, separation of variables,
discretization, formulation of the algebraic problem and,finally, possible approaches to its
efficient numerical solution. This is, in our opinion, necessary to identify the issues which
have to be resolved in order to develop further efficient generalizations of the RCWA method,
with some directions given, e.g., in [2, 9]. The RCWA approach is rich in mathematical
problems from many disciplines, including numerical linear algebra, and building an efficient
RCWA-based solver for practical problems will require a well-balanced solution of all of
them.

The paper has a simple structure. After application of the basic theory of planar elec-
tromagnetic waves to our model problem in Section2, we give in the subsequent structured
Section3 a step by step derivation of the RCWA method. Section4 reviews some remaining
open problems. The paper ends by discussing possible approaches for the efficient solution
of linear algebraic problems resulting from the RCWA discretization.

2. Plane electromagnetic waves.We will start with Maxwell’s equations of electrody-
namics for a material with no free charges (see, e.g., [13, Section 21-2, (21-19)-(21-22)])

div D̂ = 0, div B̂ = 0,

curl Ê = −∂B̂
∂t
, curl Ĥ =

∂D̂

∂t
+ Ĵ, (2.1)

whereD̂, Ê, B̂, Ĥ are the vectors of the displacement field, electric field, induction field and
magnetic field, respectively, and̂J represents the free current. Throughout the paper we will
consider linear isotropic materials for which the constitutive equations

D̂ = ε Ê, B̂ = µ Ĥ

hold. Moreover, the material will be considered magnetically homogeneous withµ = µ0,
whereµ0 is the magnetic permeability in vacuum. The electric permittivity ε will in general
be considered space dependent,ε = ε0εr, whereε0 is the electric permittivity in vacuum,
(ε0µ0)

−1 = c2, andc is the speed of light in vacuum. Under these assumptions, (2.1) takes
the form (see [13, Exercise 21-7, p. 362]),

div Ê = −Ê · grad ε

ε
, div Ĥ = 0,

curl Ê = −µ∂Ĥ
∂t

, curl Ĥ = ε
∂Ê

∂t
+ σÊ, (2.2)

1This term is used in the optical engineering and physics literature. Since there is no relationship between the
Fast Fourier Transform and the fast Fourier methods, the latter term being for mathematically oriented community
rather confusing, we will avoid the appellation “fast Fourier methods” altogether.
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whereσÊ ≡ Ĵ accounts for the electric current caused by the electric field in the conduc-
tive material with conductivityσ in accordance with Ohm’s law. Taking the curl of the last
two equations in (2.2) and using simple vector calculus yields, under standard smoothness
assumptions,

∆Ê = εµ
∂2

Ê

∂t2
+ σµ

∂Ê

∂t
− grad

(
Ê · grad ε

ε

)
, (2.3)

∆Ĥ = εµ
∂2

Ĥ

∂t2
+ σµ

∂Ĥ

∂t
− grad ε× ∂Ê

∂t
− gradσ × Ê. (2.4)

REMARK 2.1. Except for the relationship between the space dependent vectors of elec-
tric and magnetic fields in Subsection2.3, we will consider in the rest of Section2 nonconduc-
tive materials, i.e.,σ = 0. Then, the index of refraction of the materials is real (and positive),
which simplifies the exposition. For conductive materials the derivation is analogous. The
resulting individual equations for the electric and magnetic fields for lossless nonconductive
materials, as they will be used in the description of the RCWAmethod to follow, areformally
identical to the materials with losses due to their nonzero conductivity. The only difference
is that in the latter case the index of refraction is complex,with positive real and nonnegative
imaginary parts.

In a homogeneous material with losses, the real part of the index of refraction is used for
the parametric description of propagating waves similarlyas in lossless materials. A nonzero
imaginary part describes the damping of the propagating field due to losses. Other differences
are unimportant in the context of this text. For an instructive description of the theory of
electromagnetic waves, including plane waves in conductive media and the use of a complex
index of refraction, we refer to the basic textbook [13], in particular to Section 24.3.

2.1. Time-harmonic fields. We will consider only time-harmonic fields, where any
field vectorV̂(x, y, z, t) will be represented by its associated space dependent complex vector
V(x, y, z) such that

V̂(x, y, z, t) = Re[V(x, y, z) exp(−iωt)]; (2.5)

see [13] and [9, Section I.2.1]. Hereω = 2πf , fλ = v, thereforeω = 2πvλ−1, where
λ is the wavelength,f the frequency of light, andv is the speed of light corresponding to
the electric permittivity and the magnetic permeability. If the electric permittivity and the
magnetic permeability are constant andσ = 0, (2.3)-(2.4) reduce to the wave equations for
the electric and magnetic field in linear lossless isotropichomogeneous media, which gives

v =
1√
εµ

=
1√
εrµr

1√
ε0µ0

=
c

n
, n =

√
εrµr, c =

1√
ε0µ0

,

wheren is the index of refraction of the given material.
Here we only consider what is called linear optics, where thetime-harmonic setting is

relevant and there are no time-frequency conversions, so that the different wavelengths may
be treated independently of each other. In such a setting, (2.3)-(2.4) for the space-dependent
vector fields take the form (recallσ = 0)

∆E = −εµω2
E − grad

(
E · grad ε

ε

)
, (2.6)

∆H = −εµω2
H − 1

ε
grad ε× curlH. (2.7)
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2.2. Plane waves, TE and TM polarization.We will consider a plane wave solution
to Maxwell’s equations. For a plane wave whose wave-front ismoving in directionD the
vectorsE, H andD form a right-handed orthogonal system, whereE andH form a plane
(wavefront) perpendicular to the directionD. This paper considers planar diffraction on rect-
angular gratings in thex-z plane depicted in Figure2.1, where the incident plane wave is
moving in the directionD perpendicular to the third Cartesian coordinatey, with the angleθ
betweenD and the vertical directionz.

FIGURE 2.1. Rectangular grating.

The grating is uniformly extended from−∞ to +∞ in they coordinate; see [8]. We will con-
sider three subdomains: the superstratez < 0, the grating region0 ≤ z ≤ d, and the substrate
z > d, with two horizontal interfacesz = 0 (superstrate/grating interface) andz = d (grat-
ing/substrate interface). Equations (2.6) and (2.7) will be solved on each domainseparately,
with subsequent matching of the solutions atz = 0 andz = d in order to determine the in-
tegrating constants. Both materials which form the superstrate, the grooves and the ridges in
the grating region, and the substrate are considered linear, isotropic, andhomogeneous. Con-
sequently, due to the geometry of the grating it is clear thatthe electric permittivity, which
is constant in the superstrate and in the substrate, is in thegrating region a function ofx but
not of z, ε ≡ ε(x). This is essential for the RCWA method. It is furthermoreassumedthat
ε(x) is a differentiable function ofx, i.e., the vertical lines in the grating region in Figure2.1
do not represent discontinuities but a very thin layer with asmooth transition fromnI to nII.
The relevance of this assumption for physical models with the surfaces of discontinuity, as
the vertical boundaries in the grating region in Figure2.1, will be discussed later. Since the
geometric structure of the grating is independent of they coordinate, the electric and mag-
netic fields depend only on the variablesx andz, i.e.,E ≡ E(x, z) andH ≡ H(x, z). As
before, the magnetic permeabilityµ = µ0 is constant.

In order to describe the general case, it is sufficient to analyze two special polarizations
when the vectorsE andH, respectively, are perpendicular to the plane of incidencex-z, i.e.,
when the vectorsE andH, respectively, are parallel to the direction of the third Cartesian
coordinatey.

For theTransverse Electric (TE) polarization, E = (0, Ey, 0) is parallel to they axis
andH stays in thex-z plane. For suchE and ε ≡ ε(x) the inner product(E · grad ε)
vanishes. We stress the point thatherethe geometry of the grating plays a crucial role. The
equation (2.6) for E then reduces (in the superstrate, the grating region and thesubstrate) to
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the wave equation for the single nonzero componentEy,

∆Ey = −εµω2Ey.

For theTransverse Magnetic (TM) polarization, H = (0,Hy, 0) is parallel to they axis
andE stays in thex-z plane. Then,

curlH =

(
−∂Hy

∂z
, 0,

∂Hy

∂x

)
,

grad ε× curlH =

(
∂ε

∂y

∂Hy

∂x
,−∂ε

∂z

∂Hy

∂z
− ∂ε

∂x

∂Hy

∂x
,
∂ε

∂y

∂Hy

∂z

)

= −
(

0,
∂ε

∂x

∂Hy

∂x
, 0

)
= − (0, grad ε · gradHy, 0),

and (2.7) takes the form

div

(
1

ε
gradHy

)
= − µω2Hy;

see [9, equation (I.22)]. In our notation (recallε ≡ ε(x))

∆Hy − 1

ε(x)

dε(x)

dx

∂Hy

∂x
= − ε(x)µω2Hy.

2.3. Summary. Consideringµr = 1, µ = µ0 (this assumption is used throughout the
text),ε = ε0εr, c = (ε0µ0)

−1/2, ω = 2πf andfλ = c, define

k2
0 ≡ ε0µ0ω

2 =
ω2

c2
=

(
2πf

c

)2

=

(
2π

λ

)2

.

The electric field in the TE polarization is then described bythe equation

∆Ey = − k2
0εr(x)Ey, Ex = Ez = 0, (2.8)

with the magnetic field

H = − i

µ0ω
curlE,

giving

(Hx, 0,Hz) =
i

µ0ω

(
∂Ey

∂z
, 0,−∂Ey

∂x

)
. (2.9)

The magnetic field in the TM polarization is described by the equation

∆Hy − 1

εr(x)

dεr(x)

dx

∂Hy

∂x
= − k2

0εr(x)Hy, Hx = Hz = 0. (2.10)

As explained in Remark2.1, the previous derivation assumed, for the purpose of simplifying
the exposition, thatσ = 0. The resulting equations (2.8)-(2.10) remain valid, with the differ-
ence that the corresponding index of refraction is complex,even withσ 6= 0. In determining
the electric field from (2.10) (cf. (2.2)) σ cannot be omitted. Thus we have

E =
1

−iε0εr(x)ω + σ(x)
curlH,
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which yields

(Ex, 0, Ez) =
1

−iε0εr(x)ω + σ(x)

(
−∂Hy

∂z
, 0,

∂Hy

∂x

)
. (2.11)

The given description is valid in the superstrate, in the grating region, and in the sub-
strate. In the following we will use equations (2.8)-(2.9) for the description of the electric
and magnetic fields in the TE polarization, and equations (2.10)-(2.11) for the description
of the magnetic and electric fields in the TM polarization. Inthe rest of the text the index
of refraction of the substrate is generally complex, i.e.,σ is presumed to have, in general,
a nonzero value.

3. The RCWA method for a rectangular grating. We will consider the rectangular
grating in thex-z plane described above (see Figure2.1), with its extension from−∞ to
+∞ in they coordinate, wherenI andnII denote the indices of refraction of the superstrate
and substrate materials, respectively. Throughout the text we assume, consistently with the
applications that motivate our work, that there are no losses in the superstrate, i.e.,nI is
real. The substrate can be conductive, andnII is generally complex with positive real and
nonnegative imaginary parts.

The incident electric field is in the TE polarization normal to the plane of incidence, i.e.,
it is given by itsy-component

E inc
y = eik0nI(x sin θ+z cos θ), (3.1)

wherex sin θ + z cos θ determines the phase along the directionD of the incident wave vec-
tor kI,

kI = nI
ω

c
(sin θ, 0, cos θ),

with the wavenumber

kI = ‖kI‖ = nI
ω

c
= nI

2π

λ
;

see [9, relation (I.16)]. Please note that with (2.5) this gives the time-harmonic field

Ê inc
y = Re[ei{k0nI(x sin θ+z cos θ)−ωt}],

which corresponds to the wave propagating in the direction of increasingx andz, i.e., down
and to the right. Similarly, in the TM polarization the incident magnetic field is normal to the
plane of incidence,

H inc
y = eik0nI(x sin θ+z cos θ). (3.2)

The RCWA method will first be described assuming TE polarization, and then applied to TM
polarization.

3.1. Planar diffraction: TE polarization. For completeness we will briefly derive
some basics of the differential theory of gratings. A correspondence to the standard liter-
ature will be given by referencing the formulas and page numbers in [9]. An extensive survey
of the literature can be found in [6, 7, 9].

Since the grating surface is periodic with periodp and infinite, translation in thex co-
ordinate fromx to x + p multiplies the incident wave (3.1) by the phase factoreikIp sin θ, as
depicted in Figure3.1.
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FIGURE 3.1. Phase determining the periodicity.

In linear optics, the transformation of the incident field into the total field is linear, therefore
the total fieldEy(x, z) satisfies

Ey(x+ p, z) = eikIp sin θ Ey(x, z),

which must hold in the superstrate, in the grating and in the substrate; see [9, relation (I.27)].
Consequently the functionF (x, z) ≡ e−i kIx sin θEy(x, z) is periodic inx with periodp,

F (x+ p, z) = e−ikI(x+p) sin θEy(x+ p, z) = e−ikIx sin θEy(x, z) = F (x, z).

This periodicity is used forseparation of the space variablesusing the following Fourier
expansion

F (x, z) =
+∞∑

s=−∞
fs(z) e

is 2π
p

x, i.e., Ey(x, z) =
+∞∑

s=−∞
fs(z)e

ikxsx, (3.3)

wherefs(z) are the Fourier coefficients independent ofx,

kxs ≡ kI sin θ + s
2π

p
= k0

(
nI sin θ + s

λ

p

)
, s = 0, 1,−1, . . . ; (3.4)

see [9, relations (I.3), p. 3, and (I.29”), p. 22]. WithnI real,kI andkxs are also real. The
relations in (3.4) are called the Floquet conditions. Since the wavenumber ofthe reflected
field is preserved,

k2
I = k2

xs + k2
I,zs, (3.5)

(3.4) determines the discrete diffraction angles for which

sin θs =
kxs

kI
= sin θ + s

λ

nIp
; (3.6)

see Figure3.2and [9, relation (I.5)].
Relations (3.4), (3.6) represent the diffraction law for the grating. It replacesthe common

Snell’s law for specular surfaces which simply states that the tangential componentkx is
preserved. Herekxs can take different values (3.4) for different integerss.

It remains to determine the Fourier coefficientsfs(z) in (3.3).
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FIGURE 3.2. Angles between the diffraction orders.

3.2. Solution in the superstrate and in the substrate – TE polarization. In the ho-
mogeneous superstrate and substrateεr is constant, and (2.8) takes the form of the Helmholtz
equation

∆Ey = −k2
ℓ Ey, Ex = Ez = 0, ℓ = I, II. (3.7)

Therefore, forz < 0 (superstrate) andz > d (substrate) introducing the Fourier expan-
sion (3.3) into (3.7) gives the infinite set ofuncoupledordinary differential equations for the
unknown coefficientsfs(z),

[
d2

dz2
+ k2

ℓ,zs

]
f (ℓ)

s (z) = 0, ℓ = I, II, s = 0, 1,−1, . . . , (3.8)

wherek2
ℓ,zs = k2

ℓ − k2
xs; see (3.5). A general solution can be written as

f (ℓ)
s (z) = A(ℓ)

s e−ikℓ,zsz +B(ℓ)
s eikℓ,zsz, (3.9)

whereA(ℓ)
s , B(ℓ)

s are integrating constants. The physically meaningful solution is bounded
when the waves propagate away from the grating, which means that the unbounded part
of (3.9) is nonphysical and must be excluded.

Since the superstrate is lossless, the refraction indexnI is real, and therefore

kI,zs =
√
k2
I − k2

xs (3.10)

is real and positive ifkI > kxs, and zero or purely imaginary with positive imaginary part if
kI ≤ kxs, kI = k0nI. WhenkI,zs is real and positive the termA(ℓ)

s e−ikℓ,zsz corresponds to the

wave propagating in the direction of decreasingz, i.e., going up, while the termB(ℓ)
s eikℓ,zsz

corresponds to the wave propagating in the direction of increasingz, i.e., going down. If
kI,zs is zero or purely imaginary then there is no wave propagatingin the z direction, the
corresponding modes are evanescent and they will not be further considered.

Keeping a single incident wave (withs = 0) and considering no incidence from the
substrate, the solution of (3.7) in the superstrate (z < 0) can finally be written in the form
(Rs ≡ A

(I)
s )

EI
y = eikI(x sin θ+z cos θ) +

+∞∑

s=−∞
Rse

ikxsx−ikI,zsz. (3.11)

Sincekxs is real andkII corresponding to the substrate has a positive real and a nonneg-
ative imaginary part,

k2
II,zs = k2

II − k2
xs
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must also have a nonnegative imaginary part, with the real part positive or negative (the
evanescent modes are not considered). Its square root is taken in the first quadrant, with posi-
tive real and nonnegative imaginary parts. Then, the resulting solution of (3.7) represented by
the wave propagating in the substrate (z > d) in the direction of increasingz, i.e., travelling
down, is given by (̂Ts ≡ B

(II)
s )

EII
y =

+∞∑

s=−∞
T̂se

ikxsx+ikII,zsz; (3.12)

cf. [9, (I.35) respectively (I.38), p. 24]. Please note thatEII
y is bounded whenz → +∞,

which complies with the physical requirement. The fact thatEI
y is bounded whenz → −∞

follows trivially sincekI,zs is real or purely imaginary (with no wave propagating in the latter
case).

Since the imaginary part ofkII,zs is nonnegative, the real part ofeikII,zsz can be rather
small forz = d, which can cause difficulties innumerical computations. Therefore, it might
be convenient to consider the following scaling

EII
y =

+∞∑

s=−∞
Tse

ikxsx+ikII,zs(z−d), (3.13)

where

T̂s = Tse
−ikII,zsd. (3.14)

As a consequence,Ts can be expected to be much smaller in magnitude thanT̂s. It should also
be noticed that the scaling is equivalent to moving the origin in thez direction by a distanced.
In the following derivation we will continue with the scaledexpansion (3.13), and we will
comment on the effect of non-scaling on the derived algebraic system later.

The integrating constantsRs andTs have to be determined from the boundary conditions
on the top(z = 0) and the bottom(z = d) of the grating region.

REMARK 3.1. It should be noted that we use a different orientation ofthez coordinate
than they coordinate in [9].

3.3. Infinite set of differential equations for the grating region – TE polarization.
In the grating region,εr(x) represents a periodic (sufficiently smooth) function with respect
to x with periodp. It can therefore be expressed by its Fourier series

εr(x) =
+∞∑

h=−∞
ǫhe

ih 2π
p

x. (3.15)

Later (for the TM polarization) it will be convenient to consider also the subsequent Fourier
expansions

1

εr(x)
=

+∞∑

h=−∞
ahe

ih 2π
p

x. (3.16)

If the geometry of the grating is symmetric with respect tox, as in Figure2.1, the equality
εr(x) = εr(−x) gives

ǫh = ǫ−h and ah = a−h, h = 1, 2, . . . (3.17)
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The symmetry of the grating is not substantial here; it affects only the properties of the matrix
blocks in the resulting linear algebraic systems. With the Fourier expansion (3.3), (3.15) leads
again to the separation of thex andz variables and to a reduction of the problem to a set of
ordinary differential equations for the Fourier amplitudes fs(z), s = 0, 1,−1, . . . , which,
unlike (3.8), are coupled. The separation of variables is the key issue in the RCWA method.
When the analytic solution of thetruncatedsystem of ODEs is expressed in a form of matrix
functions, the boundary conditions formulated forz = 0 andz = d give the linear algebraic
systems for the integrating constants.

Inserting the Fourier expansions (3.3) and (3.15) into (2.8) then gives (cf. [9, (II.2),
p. 38])

[
d2

dx2
+

d2

dz2

] +∞∑

s=−∞
fs(z)e

ikxsx = −k2
0

+∞∑

h=−∞
ǫhe

ih 2π
p

x
+∞∑

s=−∞
fs(z)e

ikxsx.

Substituting forkxs in the exponentials, straightforward manipulations lead to (we leave a dis-
cussion of some important details to Section3.6)

+∞∑

j=−∞

{[
d2

dz2
− k2

xj

]
fj(z)

}
eij

2π
p

x = −k2
0

+∞∑

j=−∞

{
+∞∑

s=−∞
ǫj−sfs(z)

}
eij

2π
p

x. (3.18)

Equating for the indexj gives the result

d2fj(z)

dz2
= k2

xjfj(z) − k2
0

+∞∑

s=−∞
ǫj−sfs(z). (3.19)

Note that for any homogeneous medium in which onlyǫ0 is nonzero (andεr(x) is con-
stant), (3.19) decouples into the set of independent equations (3.8).

It is common to use the scalingw = zk0. Using the new scaled variablew, (3.19) takes
the form

d2fj(w)

dw2
=

k2
xj

k2
0

fj(w) −
+∞∑

s=−∞
ǫj−sfs(w), j = 0, 1,−1, 2,−2, . . . . (3.20)

We emphasize the fact that under standard assumptions on theconvergence of the Fourier
expansions above, (3.20) represents one particular form, out of many mathematically equiv-
alent forms, of writing the infinite set of differential equations for the Fourier amplitudes
fj(w), j = 0, 1,−1, 2,−2, . . . . After truncation, such mathematically equivalent forms can
produce truncated finite dimensional problems which havedifferent approximation errors
and convergence properties. The next two subsections discuss the method of truncation used
in the standard RCWA method. Open questions related to the truncation of the Fourier ex-
pansions and the infinite system of differential equations given above will be discussed later
in Section4.

3.4. Truncation – TE polarization. For numerical computations, it is necessary to
truncate the infinite Fourier expansions. From this point forward, we will consider that the
computed fields are described with sufficient accuracy by their 2N + 1 Fourier components.
The choice ofN depends on the problem; the corresponding truncation errorshould be in
balance with the accuracy of subsequent numerical computations, in particular with the ac-
curacy of solving the system of ODEs (approximation of matrix functions) and the accuracy
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of solving the final system of linear algebraic equations forintegrating constants described
below.

In the superstrate and in the substrate (see (3.11) and (3.13))

EI
y = eikI(x sin θ+z cos θ) +

N∑

s=−N

Rse
ikxsx−ikI,zsz

= eikIz cos θ eikIx sin θ +

N∑

s=−N

(
Rse

−ikI,zsz
)
eikxsx

≡
N∑

s=−N

u
(s)
I,y (z)eikxsx, (3.21)

EII
y =

N∑

s=−N

Ts e
ikxsx+ikII,zs(z−d) =

N∑

s=−N

(
Tse

ikII,zs(z−d)
)
eikxsx

≡
N∑

s=−N

u
(s)
II,y(z)eikxsx. (3.22)

We use here for simplicity the same notation forEI
y andEII

y as in (3.12) and (3.13), i.e., we
omit in (3.21) and (3.22) the indexN denoting the truncation order of the Fourier modes.
Denoting

rTE =





R−N

...
R0

...
RN




∈ C

2N+1, tTE =





T−N

...
T0

...
TN




∈ C

2N+1, (3.23)

YI = diag(kI,zs/k0) ∈ C
(2N+1)×(2N+1), (3.24)

YII = diag(kII,zs/k0) ∈ C
(2N+1)×(2N+1), (3.25)

the parts in the truncated Fourier expansions (3.21) and (3.22) dependent on thez variable
can be written, using vector notation, as

uI
y =





u
(−N)
I,y

...

u
(0)
I,y
...

u
(N)
I,y





=





R−Ne
−ikI,z(−N)z

...
R0e

−ikIz0z

...
RNe

−ikI,zN z




+





0
...

eikIz cos θ

...
0




,

uII
y =





u
(−N)
II,y

...

u
(N)
II,y



 =




T−Ne

ikII,z(−N)(z−d)

...
TNe

ikII,zN (z−d)



 ,
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wherekx0 = kI sin θ, kI,z0 = kI cos θ; see (3.4) and (3.10). With the scalingw = zk0, and
using matrix exponentials,

uI
y = e−iYIwrTE + eiYIwe0, (3.26)

uII
y = eiYII(w−dk0)tTE, (3.27)

where the last term in (3.26), e0 = [0, . . . , 0, 1, 0, . . . , 0]T , corresponds to the incident plane
wave given above (with the single nonzero spectral mode).

Similarly to (3.21)-(3.22) we consider in the grating region the truncated expansion
(see (3.3))

EG
y =

N∑

s=−N

fs(w)eikxsx, uG
y (w) ≡




f−N (w)

...
fN (w)



 . (3.28)

The 2N + 1 differential equations for the parts of the Fourier expansion dependent onz
in (3.20), j = −N, . . . , N , can be written in matrix form

d2uG
y

dw2
= −CuG

y , C = Υ − Y 2
G ∈ C

(2N+1)×(2N+1), (3.29)

where

YG = diag(kxs/k0)

= diag
(
nI sin θ +N

λ

p
, . . . , nI sin θ, . . . , nI sin θ −N

λ

p

)
, (3.30)

(Υ)js = ǫj−s, j, s = −N, . . . , 0, . . . , N. (3.31)

HereΥ represents a Toeplitz matrix with the entries determined bythe Fourier expansion
of the relative permittivity in the grating region. Since for the simple geometry of the grat-
ing (3.17) holds,Υ and, consequently,C are complex symmetric. A general solution of (3.29)
is then given in matrix form by

uG
y = ei

√
Cwg+

TE + e−i
√

Cwĝ−TE, (3.32)

whereg+
TE andĝ−TE represent the corresponding vectors of the integrating constants.

Assume, for a moment, that
√
C is a single complex number with apositive realand

a nonzero imaginary parts. Then, the first term in (3.32) corresponds to the downward and the
second part to the upward wave in the grating region (0 ≤ w ≤ dk0). The fact that the signal
can only be damped, not amplified, which means that the energyof the signal cannot grow
in the direction of its propagation, requires in both cases the positive imaginary part of the
square root; cf. [13, Section 24.3, relations (24.37), (24.38), (24.51) and (24.55)]. It should be
realized, however, that only if the real part of the square root ispositive, then with our choice
in (2.5) the first part in (3.32) corresponds to the downward and the second part to the upward
wave in the grating region. With the positive imaginary partof

√
C the wave corresponding

to ei
√

Cwg+
TE is then damped with increasingw, while the wave corresponding toe−i

√
Cwĝ−TE

is damped withdecreasingw, which is in agreement with the waves propagating downwards
and upwards, respectively.

If, however, the real part of the square root
√
C is negative, then with our choice in (2.5)

the second part in (3.32) corresponds to the downward and the first part to the upward wave
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in the grating region. Then the requirement of non-amplification of the signal (which is
frequently in the engineering literature identified with stability) implies that the imaginary
part of

√
C must be negative.

It should be noted that the non-amplification of the signal requires the real and imagi-
nary parts of

√
C to have the same sign. If C is in the upper half plane, then the principal

square root ofC lies in the first quadrant, and the solution of the discretized problem (3.32)
has a straightforward physical interpretation. If, however, C is in the lower half part of the
complex plane, i.e., it has a negative imaginary part, then the real and imaginary parts of the
square root

√
C cannot have the same sign,no matter which branch of the complex square

root is considered. In such a case the physical meaning of the discretized solution is unclear,
since the signal is inevitably amplified in one of the directions of its propagation.

In the RCWA method,C is amatrix, and the considerations above apply to every indi-
vidual eigenvalue ofC; cf. [4] and [5, Section 6.2]. Indeed, denoting byC = UJU−1 the
Jordan canonical form ofC, (3.32) in fact means

uG
y = Uei

√
JwU−1g+

TE + Ue−i
√

JwU−1g−TE. (3.33)

If all eigenvalues ofC lie in the upper half plane, then the principal value of the complex
square root will be in the first quadrant forall eigenvalues, and it make sense to state that the
square root in (3.32) corresponds to the branch with the positive imaginary part.

Herewe assumethatC indeed has all its eigenvalues in the upper half plane. Whether
such an assumption restricts the applicability of the RCWA method is yet to be found (see the
discussion below) and we pose it as an open problem.

REMARK 3.2. Discussions of the choice of a branch of the complex square root lacks
completeness in the literature on RCWA known to us. In particular, the consequences of the
fact that non-amplification of the signal in the direction ofpropagation links together the signs
of both real and imaginary parts of the eigenvalues in (3.33), with its consequences for

√
C,

are not clearly explained. Sometimes the signs of thereal partsof the eigenvalues of
√
C

are ignored, and the positive imaginary parts of the eigenvalues of
√
C are identified with

damping, independently of the direction in which the signalpropagates. Such an approach
is not correct. For example, the negative real part of the eigenvalue of

√
C corresponds

in ei
√

Cwg+
TE to the wave propagating in the direction of decreasingw, and therefore the

positive imaginary part of the eigenvalue of
√
C means in such a case an amplification, not

damping, of the signal in the direction of propagation. Similarly, the negative real part of
of the eigenvalue of

√
C corresponds ine−i

√
Cwĝ−TE to the wave going in the direction of

increasingw, and the positive imaginary part of the eigenvalue of
√
C means in this case an

amplification, not damping, of the signal in the direction ofpropagation.

Positive imaginary parts of the eigenvalues of
√
C can cause numerical difficulties; cf.

Section3.2. We will therefore use, as above, the following scaling

uG
y = ei

√
Cwg+

TE + e−i
√

C(w−dk0)g−TE, (3.34)

where, comparing with (3.32),

ĝ−TE = ei
√

Cdk0g−TE. (3.35)

In the following derivation we will continue with the scaledexpansion (3.34), and we will
comment on the effect of non-scaling to the derived algebraic system later.

Summarizing, (3.26), (3.27), and (3.34) describe thew (or z) dependent2N + 1 Fourier
coefficients of the truncated Fourier expansion (in the variablex) of the electric fieldEy in
the superstrate, substrate, and in the grating region, respectively.
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3.5. Matching on the boundaries and formulation of the algebraic problem – TE
polarization. In order to determine the integrating constants, which represent the vectors
rTE, tTE, g+

TE andg−TE, each of length2N + 1, we have two sets of2N + 1 equations for
matching the electric field atz = 0 andz = d (top and bottom of the grating region). Two
missing sets of2N +1 equations can be obtained by matching the tangential componentsHx

of the magnetic field [9, pp. 39–40] given by (see (2.9))

Hx =
i

µ0ω

∂Ey

∂z
= i

(
ε0
µ0

)1/2
∂Ey

∂w
.

Unlike in some other methods for computing the diffraction of light on gratings, the RCWA
method deals with the grating regionmathematicallyas a single region with the electric per-
mittivity dependent onx. Consequently, there are no other boundary conditions to consider.

Using the truncated Fourier expansions forEy, (see (3.21), (3.22), and (3.28)), and dif-
ferentiating the Fourier coefficients (3.26), (3.27), and (3.34) gives

∂uI
y

∂w
= −iYIe

−iYIwrTE + iYIe
iYIwe0, (3.36)

∂uII
y

∂w
= iYIIe

iYII(w−dk0)tTE, (3.37)

∂uG
y

∂w
= i

√
Cei

√
Cwg+

TE − i

√
Ce−i

√
C(w−dk0)g−TE. (3.38)

Finally, writing the boundary matching conditions

−EI
y(x, 0) + EG

y (x, 0) = 0, −HI
x(x, 0) +HG

x (x, 0) = 0

atz = 0, and

+EG
y (x, d) −EII

y (x, d) = 0, +HG
x (x, d) −HII

x (x, d) = 0

at z = d into one matrix equations for the unknown integrating constantsrTE, g+
TE, g−TE, tTE,

gives the large4(2N + 1) × 4(2N + 1) linear algebraic system (the second and the fourth
block equations have been multiplied by−i)





−I I ei
√

Cdk0 0

YI

√
C −

√
Cei

√
Cdk0 0

0 ei
√

Cdk0 I −I
0

√
Cei

√
Cdk0 −

√
C −YII









rTE

g+
TE

g−TE

tTE



 =





e0
nI cos θ e0

0
0



 , (3.39)

denoted in the following as

ATEξTE = bTE.

It should be noted that in most practical measurements one does not actually need the full
solutionξTE. Typically, only the zeroth order mode ofrTE, which can be expressed as

r0,TE = (eT
0 , 0)ξTE = eT

0 rTE,

is required.
If we use the unscaled blocks of unknownsĝ−TE and t̂TE (see (3.14) and (3.35)), the

matrix of the linear algebraic system (3.39) will have the last two columns multiplied by the
corresponding factors, which will increase its condition number and make it less suitable for
numerical computations.
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3.6. Subtleties of the discretization.Now we describe in more detail the steps which
lead to the system of the linear algebraic equations (3.39). Using Maxwell’s equations and
assuming a plane time-harmonic wave, we have derived the second order equation

∆Ey = −k2
0εr(x)Ey (3.40)

for the electric field componentEy. Then we have considered Fourier expansions

Ey(x, z) =

∞∑

s=−∞
fs(z)e

i(kI sin θ+s 2π
p )x, εr(x) =

∞∑

h=−∞
ǫhe

ih 2π
p

x, (3.41)

where the second reflects the dependence ofεr onx in the grating region. Sinceεr is constant
in the superstrate and in the substrate, substitution forEy into (3.40) yields decoupled second
order differential equations for the unknown coefficientsfs, s = 0,−1, 1, . . . ; see (3.8).
Writing down the solution for afinitesubset

f−N , . . . , f0, . . . , fN ,

which meanstruncationof the first expansion in (3.41), gives finally the truncated approxima-
tionEI

y andEII
y to the solution in the superstrate and in the substrate respectively; see (3.21)-

(3.27).
In the grating region the situation is more complicated due to the fact thatεr(x) is not

constant there, andεrEy represents the product of two Fourier series (3.41),

e−ikIx sin θεrEy =

+∞∑

h=−∞
ǫhe

ih 2π
p

x
+∞∑

s=−∞
fs(z)e

is 2π
p

x

=

+∞∑

j=−∞

(
+∞∑

s=−∞
ǫj−sfs(z)

)
eij

2π
p

x

= lim
N→∞

N∑

j=−N

(
lim

M→∞

M∑

s=−M

ǫj−sfs(z)

)
eij

2π
p

x, (3.42)

where the last line represents the precise formulation. Considering the particularsimulta-
neous truncationwith a fixedM = N , we obtain the truncated approximationEG

y to the
solution in the grating region. MatchingEI

y, EG
y andEII

y , HI
x, HG

x andHII
x on the bound-

aries gives the algebraic system (3.39) for the integrating constants.
The last line of the identity (3.42) represents one of the crucial points of the whole deriva-

tion. The two functionsεr(x) ande−ikIx sin θEy(x, z) are periodic in thex direction with pe-
riod p; these are expanded into Fourier series and then multiplied. Their product is expressed
as a Fourier series and then approximated bythe simultaneous truncation

e−ikIx sin θεr(x)Ey(x, z) = lim
N→∞

N∑

j=−N

ψ
(N)
1,j (z)eij

2π
p

x, (3.43)

where

ψ
(N)
1,j (x) =

N∑

s=−N

ǫj−sfs(z)
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is also a truncated approximationof the true Fourier amplitude

ψ1,j(z) =

+∞∑

s=−∞
ǫj−sfs(z),

known in the literature as Laurent’s rule [3, p. 240], [6, 7], [9, Chapter IV], though the prin-
ciple can be connected to Cauchy’s summation rule; see [3, p. 227]. Here everything relies
upon the convergence of the limit of the simultaneously truncated expansion in (3.43).

In general, when the multiplied functions are piecewise smooth bounded periodic func-
tions which have no common discontinuities, which is satisfied in (3.43) using our assump-
tion that εr(x) andEy(x, z) are sufficiently smooth, the series converges [6, Theorem 1,
p. 1872], [7, Theorem 4.3, p. 122]. Then the infinite set of differential equations (3.20)
is truncated into the set of2N + 1 differential equations for2N + 1 unknown functions
(see (3.29)) and the solutionuG

y is expressed in matrix form by (3.34). In other words, the
ODE problem (3.20) for an infinite number of unknown functionsfj(w) is approximated
using thetruncated Laurent’s ruleby the set of2N + 1 ordinary differential equations for
uG

y (w) = [f−N (w), . . . , fN (w)]T . The whole solution process is justified by the conver-
gence of the limit on the right hand side of (3.43) to the function on the left hand side of
that identity. Without convergence and equality in (3.43), the truncation would lead to an
incorrect result, since the solution of the truncated problem would in general not converge for
N → ∞ to the solution of the original problem. Here the convergence is meant point-wise,
not in a norm which ignores sets of measure zero; see [7, Section 4.4.2].

The considerations above may seem obvious, but it is useful to include them here.
Though the matter is explained in some mathematically oriented papers [6, 7], and also,
using less rigorous arguments, in a more practically focused book [9, Chapter IV], the con-
sequences do not seem fully realized by the community of practitioners. In particular, if we
have two piecewise smooth bounded periodic functions whichhave common jump disconti-
nuities, then the truncated Laurent’s rule cannot be applied; see [6, Theorem 2, p. 1872], [7,
Theorem 4.4, pp. 122–123]. If, however, theproductof the two functions is continuous at
the points of their common discontinuities, then, under some nonsingularity assumptions, it
can be expressed as a Fourier expansion using thetruncated inverse multiplication rule[6,
Theorem 3, p. 1872, relation (22)], [7, Theorem 4.5, p. 123, relation (4.32) and the exam-
ples in Section 4.4.4]. In the derivation of (2.6)-(2.7) we have assumedsmooth functionsand
therefore the discussion of discontinuities may seem irrelevant. In physics, however, one has
to deal with modelling of the idealized surfaces of discontinuity; see [13, Chapter 9]. In order
to get a good match of the computed results with physical reality, it is therefore necessary to
use truncation rules whichin the limit remain valid in the presence of discontinuities.

It should be emphasized that the truncated inverse multiplication rule, which will be
applied in the following section, cannot be viewed as a mechanical rule derived simply by
the truncation on both sides of the rearranged identities, using Laurent’s rule followed by
the inversion of the matrix of truncated coefficients, as inaccurately interpreted in [9, Sec-
tion IV.2.1, p. 82, relation (IV.10) and its derivation given there]; see also [11]. Though
such derivation may give the correct result, it is neither complete nor mathematically correct.
It does not provethe convergenceof the resulting approximation of the Fourier expansion;
see [7, proof of Theorem 4.5, Appendix A, pp. 136–137].

The common subtle mistake, which has led to incorrectly discretized formulations used
in practice, is caused by overlooking the following fact. Let JΓK(N) denote the Toeplitz matrix

JΓK(N)
js = γj−s, j, s = −N, . . . , 0, . . . , N, (3.44)
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generated by the Fourier coefficients of some given function

Γ(x) =

+∞∑

s=−∞
γse

is 2π
p

x.

Assume thatΓ−1 has no singularities and its Fourier expansion is given by

Γ−1(x) =

+∞∑

s=−∞
δse

is 2π
p

x,

with the corresponding Toeplitz matrix defined analogouslyto (3.44),

q
Γ−1

y(N)

js
= δj−s, j, s = −N, . . . , 0, . . . , N.

Then, in general,

(
JΓK(N)

)−1

6=
q
Γ−1

y(N)
.

There are various mathematically well justified identitiesand formulas containinginfinite
matriceswhich can be useful here; see [7, Theorems 4.1 and 4.2, Section 3.3]. Classical
treatment of the spectral theory of infinite matrices related to the mathematical foundations of
the matrix formulation of quantum mechanics can be found in [14], together with extensive
comments on historical developments and literature. For a comprehensive introduction to
infinite Toeplitz matrices, with very valuable comments on the existing literature, see [1,
Chapter 1].

Without a mathematically rigorous justification, identities valid for infinite matrices can-
not (in general) be “truncated”, and then freely manipulated in further derivations, with the
ambiguous argument that the obtained results hold “in the limit”. The papers by Li [6, 7]
are invaluable in demonstration of possible consequences of not taking into account the fact
that numerical approximations do not solve the original problem [6, p. 1876], [7, Summary,
p. 133]. A rigorous clarification of the relationship between the solution of the original prob-
lem and its numerically computed approximation is an imperative, not an option which may
be left aside.

We end this section rewriting (3.29) using the notation analogous to (3.44),

d2uG
y

dw2
= −

[
JεrK(N) − Y 2

G

]
uG

y , JεrK(N) ≡ Υ.

3.7. TM polarization. Here we will briefly summarize the derivation of the linear al-
gebraic system analogous to (3.39) for the TM polarization, while pointing out subtle differ-
ences between both cases. Since TE and TM polarizations are treated separately, we can use,
where appropriate, similar notations for the magnetic fieldin the TM polarization as for the
electric field in the TE polarization without confusion.

In the superstrate and in the substrate the electric permittivity is constant. Therefore the
equation (2.10) for the magnetic fieldHy in the superstrate and in the substrate is in the TM
polarization fully analogous to the equation (2.8) for the electric field in the TE polarization.
With the incident magnetic fieldH inc

y given by (3.2) and the Fourier expansion forHy(x, z)

analogous to (3.3), the solutionHI
y in the superstrate andHII

y in the substrate is given by
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the right hand sides of the identities (3.11) and (3.13). After truncation (similarly to (3.21)
and (3.22) we omit the indexN )

HI
y =

N∑

s=−N

u
(s)
I,y (z)eikxsx, (3.45)

HII
y =

N∑

s=−N

u
(s)
II,y(z)eikxsx, (3.46)

where

uI
y = [u

(−N)
I,y , . . . , u

(N)
I,y ]T = e−iYIwrTM + eiYIwe0, (3.47)

uII
y = [u

(−N)
II,y , . . . , u

(N)
II,y ]T = eiYII(w−dk0)tTM, (3.48)

YI andYII are given by (3.24) and (3.25), respectively, and

rTM = [R−N , . . . , R0, . . . , RN ]T ∈ C
2N+1,

tTM = [T−N , . . . , T0, . . . , TN ]T ∈ C
2N+1,

which are, in general, different from the vectorsrTE andtTE given by (3.23). We use in (3.48)
the same scaling as in (3.13).

In order to derive the truncated approximate solution in thegrating, we rewrite the equa-
tion (2.10) for Hy(x, z) in the form

∂2Hy

∂z2
= −εr(x)

{
∂

∂x

[
1

εr(x)

∂Hy

∂x

]
+ k2

0Hy

}
. (3.49)

Now we need to substitute forHy and∂Hy/∂x the Fourier expansions

Hy(x, z) =
+∞∑

s=−∞
fs(z)e

i(kI sin θ+s 2π
p

)x, (3.50)

∂Hy

∂x
(x, z) = i

+∞∑

s=−∞
kxsfs(z)e

i(kI sin θ+s 2π
p

)x,

and forεr(x) and1/εr(x) the expansions (3.15) and (3.16) respectively. We observe that,
in the idealized sense(see [13, Chapter 9] and the discussion in Section 3.6)1/εr(x) and
∂Hy/∂x are piecewise continuous with common discontinuities. Their product is continuous.
From [6, Theorem 3, p. 1872], [7, Theorem 4.5, p. 123] (the nonsingularity assumptions in the
statements of the theorems from [6, 7] are satisfied from the physics of the problem), under
our smoothness assumptions as well as in the idealized sense, the product can be written using
thetruncated inverse multiplication rule

e−ikIx sin θ 1

εr(x)

∂Hy

∂x
= lim

N→∞

+N∑

h=−N

ψ
(N)
2,h (z)eih

2π
p

x,

where

ψ
(N)
2,h (z) = i

N∑

s=−N

(
JεrK(N)

)−1

hs
kxsfs(z). (3.51)
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Consequently,

1

εr(x)

∂Hy

∂x
= lim

N→∞

+N∑

h=−N

ψ
(N)
2,h (z)eikx,hx,

which gives

e−ikIx sin θ ∂

∂x

[
1

εr(x)

∂Hy

∂x

]
= i lim

N→∞

N∑

h=−N

ψ
(N)
2,h (z)kxhe

ih 2π
p

x. (3.52)

The product of (the idealized discontinuous)εr(x) with the rest of the right hand side of (3.49)
is again continuous, because the left hand side of (3.49) is continuous inx. It therefore can
be handled by the truncated inverse multiplication rule. Here, however, thetrue Fourier

amplitudesfor the function ∂
∂x

[
1

εr(x)
∂Hy

∂x

]
are not available, and we replace them by their

truncated inverse multiplication rule approximationsiψ
(N)
2,h (z)kxh from (3.52), which depend

on the truncation limitN ,

e−ikIx sin θ ∂
2Hy

∂z2
= − lim

N→∞

N∑

ν=−N

ψ
(N)
3,ν (z) eiν

2π
p

x,

where

ψ
(N)
3,ν (z) =

N∑

h=−N

(s
1

εr

{(N)
)−1

νh

(iψ
(N)
2,h (z)kxh + k2

0fh(z)).

Substituting forHy the expansion (3.50) and forψ(N)
2,h the expansion (3.51), we obtain after

truncation

∂2fj(z)

∂z2
=

N∑

h=−N

(s
1

εr

{(N)
)−1

jh

{
N∑

s=−N

[(
JεrK(N)

)−1

hs
kxskxh

]
fs(z) − k2

0fh(z)

}
,

j = −N, . . . , 0, . . . , N. (3.53)

With the scalingw = zk0 and the matrix-vector notation for the truncated expansion

HG
y =

N∑

s=−N

fs(w)eikxsx ≡
N∑

s=−N

u
(s)
G,y(w)eikxsx,

uG
y (w) = [u

(−N)
G,y (w), . . . , u

(N)
G,y (w)]T ≡ [f−N (w), . . . , fN (w)]T ,

the2N + 1 differential equations in (3.53), j = −N, . . . , 0, . . . , N , can be written as

d2uG
y

dw2
= −QuG

y ,

where

Q ≡
(s

1

εr

{(N)
)−1 [

I − YG

(
JεrK(N)

)−1

YG

]
≡ Z−1[I − YGΥ−1YG], (3.54)
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while

(Υ)−1 =
(
JεrK(N)

)−1

and Z−1 =

(s
1

εr

{(N)
)−1

(3.55)

represent, respectively, the inverse of the Toeplitz matrix (3.31), and the inverse of the Toeplitz
matrix whose entries are determined by the Fourier expansion of the inverse of the relative
permittivity in the grating region; see (3.16). Analogously toΥ, the matrixZ is complex
symmetric. It should be noted that the inverse of a Toeplitz matrix is generally not Toeplitz.
A solution to (3.54) may be given in matrix form by

uG
y = ei

√
Qwg+

TM + e−i
√

Q(w−dk0)g−TM,

where we use in the second term the same scaling as in (3.34). The square root function
corresponds to the branch with the positive imaginary part.If all eigenvalues ofQ are in
the upper half plane, then the signal is not amplified in the direction of propagation; see
the discussion in Subsection3.4. In some experiments, however, we have observed some
eigenvalues ofQ also in the third quadrant, which can be considered as an artificial loss of
passivity due to the discretization. A full analysis of thatobservation is yet to be undertaken.

We also need to find the tangential component of the electric fieldEx. Using (2.11),

Ex = − 1

−iε0εr(x)ω + σ(x)

∂Hy

∂z
= −i

(
µ0

ε0

)1/2
1

εr(x) + iσ(x)/(ε0ω)

∂Hy

∂w
.

Sinceµr = 1, in the superstrate and in the substrate, apart from the thintransition regions
(see [13, Chapter 9]),εr + iσ/(ε0ω) = n2

I /µr = n2
I andεr + iσ/(ε0ω) = n2

II/µr = n2
II re-

spectively. Then we can immediately write the truncated approximation forEx, using (3.45)
and (3.46),

EI
x = −i

(
µ0

ε0

)1/2
1

n2
I

N∑

s=−N

∂u
(s)
I,y

∂w
eikxsx,

EII
x = −i

(
1

ε0

)1/2
1

n2
II

N∑

s=−N

∂u
(s)
II,y

∂w
eikxsx,

where the derivatives∂uI
y/∂w and∂uII

y /∂w are given by (3.36) and (3.37), respectively.
In the grating region the derivation requires more care. Since (the idealized)∂Hy/∂w is

continuous, substituting the Fourier expansions (3.16) and (3.50) gives

e−ikIx sin θ 1

εr(x)

∂Hy

∂w
=

+∞∑

h=−∞
arhe

ih 2π
p

x
+∞∑

s=−∞

∂fs(w)

∂w
eis

2π
p

x

= lim
N→∞

N∑

ν=−N

ψ
(N)
4,ν (w)eiν

2π
p

x,

where

ψ
(N)
4,ν =

N∑

s=−N

ar(ν−s)
∂fs(w)

∂w
.
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Consequently, after truncation,

uG
y =

s
1

εr

{(N) {
i

√
Qei

√
Qwg+

TM − i

√
Qe−i

√
Q(w−dk0)g−TM

}
, (3.56)

EG
x = −i

(
µ0

ε0

)1/2 N∑

s=−N

u
(s)
G,ye

ikxsx.

Finally, writing (similarly as in the TE polarization above) the boundary matching con-
ditions

−HI
y(x, 0) +HG

y (x, 0) = 0, −EI
x(x, 0) +EG

x (x, 0) = 0

atz = 0, and

+HG
y (x, d) −HII

y (x, d) = 0, +EG
x (x, d) − EII

x (x, d) = 0

at z = d, into one matrix equation for the unknown integrating constantsrTM, g+
TM, g−TM,

andtTM, gives the4(2N + 1) × 4(2N + 1) linear algebraic system similar to (3.39), which,

recalling
r

1
εr

z(N)

≡ Z and multiplying the second and the fourth equation by−i, can be

written as




−I I ei
√

Qdk0 0
1

n2
I
YI Z

√
Q −Z√Qei

√
Qdk0 0

0 ei
√

Qdk0 I −I
0 Z

√
Qei

√
Qdk0 −Z√Q − 1

n2
II
YII









rTM

g+
TM

g−TM

tTM



 =





e0
cos θ
nI

e0
0
0



 , (3.57)

and will be denoted in the following as

ATMξTM = bTM.

As in theTE polarization, in practical measurements one typically needs only the zeroth
order mode ofrTM,

r0,TM = (eT
0 , 0)ξTM = eT

0 rTM.

If we use the unscaled blocks of unknowns

t̂TM = e−iYIIdk0tTM, ĝ−TM = ei
√

Qdk0g−TM,

the last two columns of the matrix of the linear algebraic system (3.57) must be scaled ac-
cordingly.

3.8. Numerical experiments. In this section we present some of the results obtained
with the RCWA method. Our aim is to illustrate the numerical behavior of the method using
a representative example, and not necessarily to present anoverview of the efficiency of the
method. Nevertheless, the importance of the issue of efficiency of the numerical computations
will be apparent, and will motivate the following sections which will close the paper.

In our experiment, we apply RCWA to the problem of computing the zeroth order re-
flection coefficient from a rectangular grating, such as the one depicted in Figure2.1. This
experiment has its basis in the semiconductor industry, where optical instruments measure
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FIGURE 3.3. Indices of refraction and extinction for silicon.
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FIGURE 3.4. Approximation error as a function of the number of Fourier modes.

the reflection coefficients from periodic structures on silicon wafers, and through an inverse
problem, determine the geometry of the measured feature.

In this simple example, the substrate is silicon and the superstrate is air. The material for
the substrate is chosen not merely because of its importancein the semiconductor industry,
but also because the material exhibits a number of interesting properties. First, it has a very
high index of refraction relative to most materials; for example, at a wavelength of 500 nm
the index of refraction is over 4. Compare this to the index ofrefraction of glass, which is ap-
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proximately 1.5. Second, at wavelengths in the ultravioletregion (below 280 nm) the index of
extinction (the imaginary part of the complex index of refraction) dominates, with the material
behaving more like a conductor than a dielectric. To illustrate the behavior of the electromag-
netic fields for these two different regimes, we compute a solution to Maxwell’s equation via
RCWA at two wavelengths, 250 and 500 nm. For these wavelengths, the complex indices of
refraction for silicon have been determined experimentally, with nII = 1.580 + 3.632i and
nII = 4.2975 + 0.07297i at wavelengths of 250 and 500 nm, respectively. For reference,
a plot of the indices of refraction and extinction for silicon as a function of wavelength is
depicted in Figure3.3.
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FIGURE 3.5. Eigenvalues of the matricesC andQ.

The values of the parameters used to describe the rectangular grating are as follows:
the periodp = 400, space fractionq = pt/p = 125/400, and the heightd = 300. All
geometrical distances are innm. As it happens, these values are also representative of the
measurement targets one might find in the semiconductor industry. The incidence angle for
all experiments in this paper isθ = 70 degrees.

Figure3.4 compares the convergence of the zeroth order reflection coefficient R0 for
the TE and TM modes of both wavelengths as a function of the number of Fourier modes
used to compute the fields. The approximation error is computed as the modulus of the
difference between the zeroth order reflection coefficient and that which is computed for 100
Fourier modes. Note that the convergence is faster for the TEthan the TM modes for both
wavelengths, that the convergence of the TE method is fasterfor silicon in its dielectric regime
( λ = 500 nm) than in its more metallic regime (λ = 250 nm), and that the convergence
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FIGURE 3.6. Contour plots of the electric and magnetic fields.

of the TM method is more monotonic for silicon in its dielectric regime than in its more
metallic regime. Finally, note that the solution convergesquickly to the relative accuracy of
about10−3–10−4 for relatively few Fourier modes. This property is of particular interest in
the semiconductor industry, due to the importance of the speed of the solution. Any greater
accuracy of the solution is superfluous due to the measurement precision of its instruments.

Figure 3.5 plots the complex eigenvalues of the system matrices and forboth wave-
lengths. We note that, as expected, the eigenvalues are in the upper half plane. It has been
observed, however, that for cases with materials with largeindex of extinction, some of the
eigenvalues ofQ can drift into the third quadrant of the complex plane, whichcauses dif-
ficulties in physical interpretation of the computed solution described above. Interestingly,
we have not yet encountered a situation in which the eigenvalues ofC fall outside the upper
half-plane, or when any eigenvalue ofQ falls within the fourth quadrant.

Finally, we plot in Figure3.6a contour map of the transverse electric and magnetic fields
for the wavelengthsλ = 250 nm andλ = 500 nm. The fields are computed with the field
expansion truncated to 10 Fourier modes. Let us point out a few features in these plots. First,
note that the fields hardly penetrate the silicon structure at the wavelengthλ = 250 nm,
which demonstrates the property of finite skin-depth for conductive materials [13]. Second,
note that at wavelengthλ = 500 nm, the magnitude of the magnetic field in the dielectric
region is much higher than that of the surrounding air. This is a consequence of the high index
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of refraction of silicon at this wavelength. Third, note that the contour lines in the TE mode
are smooth across the material boundaries (shown in light grey), while for the TM mode the
contour lines are almost discontinuous. This is due to the continuity properties of the TE and
TM fields across material boundaries, with the TE field being smooth and the TM field being
almost discontinuous. Finally, note the wavy nature of the contour line for the TM field at
coordinate positionx ≈ 150 andz ≈ 50 for the wavelengthλ = 500 nm. This is an artifact
of the Fourier decomposition. This feature gradually disappears as the number of Fourier
modes kept in the field expansion grows larger.

4. Open problems in the analysis of the RCWA method.As is stated in [6], the pro-
cess of discretization in RCWA presented here can lead to some nontrivial ambiguities. Some
of the approaches found in the literature are not well-justified mathematically, and have the
potential of yielding incorrect results without proper analysis. While we have dealt with many
of these issues here, a number of issues remain open, which welist below.

One issue is that of the smoothness of the permittivity function within the grating region.
As mentioned, we have presumed for the sake of the derivationthat it is smooth; however,
in the literature it is given an idealized mathematical description as discontinuous at the in-
terface between two distinct materials. The discontinuityidealization has been treated in the
physics literature by referring to the integral form of Maxwell’s equation and taking appro-
priate limits; cf. [13, Chapter 9]. Other means might be through the periodic convolution of
the permittivity function with a distribution which in an appropriate limit becomes the Dirac
delta function. A more detailed treatment of the discontinuity of the fields and permittivities
is left, however, as an open problem.

The reduction of the problem from a countably infinite set of ordinary differential equa-
tion to a finite set yields the problem of how to formally multiply the two series and take
their truncations. Hardy [3, Chapter X] provides a set of formal rules, and discusses their
convergence properties. The applicability of these rules to RCWA remains an open problem.

Another issue that is not addressed is the issue of the possible additional truncations. In
standard RCWA, if the fields are truncated to orderN (consisting of2N + 1 components),
Fourier modes up to order2N (consisting of4N + 1 components) are used in the matrices
Υ andZ. As is pointed out in [11, Appendix A], this inconsistency between the number of
components for the fields and for the permittivity function is a consequence of the represen-
tation of the truncated problem. It is clear, for example, that fewer modes for the permittivity
could be used, reducing the matricesΥ andZ to banded matrices. Taking a cue from signal
processing literature, it might be advantageous for reasons of convergence or conditioning to
multiply the Fourier components of the permittivity function by a suitable windowing func-
tion. Again, such approaches and their analysis remain open.

We have not addressed here the systematic treatment of loss of passivity that one can
observe in the solution of the truncated problem, e.g., the loss of passivity associated with
the eigenvalues of the matricesC andQ that lie in the third quadrant. The standard ap-
proach in RCWA enforces a type of passivity with the eigenvalues of

√
C and

√
Q lying in

the upper half-plane. While this ensures that the matrix exponentials in (3.38) and (3.56)
remain bounded asw becomes large, it has the consequence of mixing waves with different
propagation directions, as those eigenmodes associated with third quadrant eigenvalues of
C andQ have a different propagation direction than those associated with first and second
quadrant eigenvalues ofC andQ. While this seems to produce an acceptable solution of the
numerical problem, a complete analysis of this issue and itsphysical interpretation is yet to
be undertaken.

5. Perspectives of algebraic computations within RCWA.The paper presents, within
our abilities, a mathematically justified derivation of theRCWA discretized approximation to
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the problem of light diffraction on a simple rectangular grating. Without a mathematically
correct derivation of the truncated approximation there isa possibility that the discretized
problem may not be formed correctly. From a practical point of view, the message is that
although the discretization can be motivated intuitively or empirically, its justification requires
mathematical rigor. Indeed, it has been observed in practice that an intuitive derivation can
fail. Therefore a step-by-step detailed mathematical examination of methods used in practical
computations is useful.

The solution of Maxwell’s equation by the RCWA method on a simple rectangular grat-
ing given here forms the basis for computing the solution formore complicated shapes. To
extend RCWA to these shapes, it is necessary to approximate the original shape by a set of
vertical regions, or slabs, within which the permittivity is constant as a function of height. For
example, a trapezoid is approximated by a shape in the form ofa ziggurat. This approxima-
tion requires the solution of boundary conditions at the interface of each slab, which results
in a system matrix akin to (3.39) or (3.57), i.e., block tridiagonal with the number of diagonal
blocks proportional to the number of slabs; see, e.g., [2]. Typically, a trade-off must be made
in the approximation of the shape by slabs. A good geometrical approximation of the shape
of the grating may be obtained with many slabs of small height. On the other hand, using such
a large number of slabs makes the computation of integratingconstants more demanding.

The dominance of RCWA in the field of scatterometry has been attributed to two fac-
tors. First, RCWA has been shown to be remarkably robust: it is able to reliably compute the
reflection coefficients for the wide range of wavelengths, for arbitrary shapes and incidence
angles. Second, it is able to compute the reflection coefficients to a relative accuracy of about
10−4 in a reasonably short time. This is crucial as the industrialapplication is that of an
inverse problem, whereby the reflection coefficients as functions of the wavelengths (called
the reflection spectra) computed for a parameterized structure are matched to the measured
information. The time allotted for the solution of the inverse problem is determined by the
hardware, typically between 2 and 10 seconds. In one instantiation of the problem, the match-
ing is performed by an on-line optimization algorithm, which takes many steps to converge
and requires in input not only the measured and computed reflection spectra, but also its Ja-
cobian, i.e., the derivative of the computed reflection spectra as a function of the parameter
vector. The Jacobian is typically approximated using finitedifferences. Since the number
of optimization parameters is usually between 5 and 10, the number of wavelengths used in
the reflection spectra computation is approximately 100, and the number of steps for conver-
gence is between 10 and 20, the solution of the inverse problems requires the computation of
a number of individual reflection coefficient of the order of 10,000. Even when one accounts
for the parallelizability of the problem, the need for computational efficiency is clear.

From this setting a number of interesting problems in numerical linear algebra arise:

• One problem is computing the solution of the linear system which yields the Fourier
components of the fields. Two general approaches can be taken. One is the solution
a linear system consisting of the block tridiagonal matrix as is written in this paper,
another uses a method of scattering matrix propagation [9, Section III.6]. Typically,
the latter method is used in industry and is equivalent to a sequential block elimina-
tion algorithm.

• Another problem is the issue of efficiently computing the function of matrices, such
as the matrix exponential or square root, which is necessaryto fill the blocks in the
system matrix. Since the matrix functions are computed overthe domain of highly
structured matrices, there is the possibility of computingthese matrix functions more
efficiently than for an arbitrary dense matrix.

• A third issue is that of providing an a priori estimate for thenumber of slabs and/or
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number of Fourier modes required to achieve a given accuracy. This remains an
open problem. Also, the issue of the convergence of the eigenvalues of the matrices
C andQ, (3.29) and (3.54), respectively, as a function of the number of Fourier
modes is also not well understood.

• Another issue that arises is related to the computation of solutions for gratings with
highly conductive materials. In such as case the matricesΥ andZ, (3.31) and (3.55),
respectively, can be ill-conditioned with respect to inversion. Recently this phe-
nomenon was studied and attributed to spurious eigenvalueswith small magnitudes;
see [10]. A suitable regularization method has yet to be devised.

• The most pressing problem facing the industrial use of RCWA is thespeed of the so-
lution for three-dimensional (doubly periodic) structures. In these structures an arbi-
trary two dimensional shape is tiled on thex-y plane, and requires a two-dimensional
Fourier decomposition of the permittivity and the fields. Insuch a case, the system
matrices become much larger, as the dimensionality of the field vectors scale as the
product of the number of retained Fourier componentsin x andy. Thus, techniques
for improving the speed of the solution for the two-dimensional (singly periodic)
problems become essential for three-dimensional problems.

We close our discussion with the note that approximation of the solution of the linear
systemsATEξTE = bTE andATMξTM = bTM has in RCWA a very particular meaning. We
need to approximate only one element of the solution vector,namely, the one which is asso-
ciated with the zeroth diffraction order. This indicates that there may be a number of suitable
fast iterative methods to find that element with sufficient accuracy. Recent results [12] indi-
cate that this quantity can be computed to a given level of accuracy considerably faster by
a moment-matching method, than by explicitly computing thesolution of the linear system.
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