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A COUNTEREXAMPLE FOR CHARACTERIZING
AN INVARIANT SUBSPACE OF A MATRIX *

HUBERT SCHWETLICK' AND KATHRIN SCHREIBER!

Abstract. As an alternative to Newton’s method for computing a simplereigkie and corresponding eigen-
vectors of a nonnormal matrix in a stable way, an approach basezingularity theory has been proposed by
Schwetlick/LlOsche [Z. Angew. Math. Mech., 80 (2000), pp. 9—-25]. In thipgraby constructing a counterexample
with a singular linear block operator, it is shown that aigtiforward extension of this technique to the computation
of invariant subspaces of dimensipn> 1 will not work, in general. Finding this counterexample regdia detailed
study of the linear block operator.

Key words. Eigenvalue problem, simple invariant subspace, block Newtethod, block Rayleigh quotient
iteration.
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1. Introduction. Consider the eigenvalue problem
Ax = Xz (1.2)

with an arbitrary matrixA € C"*™ and suppose that; € C is an algebraically simple
eigenvalue with normalized right and left eigenvecterandy;, resp., i.e.ker(A — A1) =
span {z; }, ker(A— X\ 1)# = span {y, }, |z1]| = ||ly1|| = 1,y =1 # 0. Here||-|| denotes the
Euclidean norm, and the spectral norm in case of matricestder to compute the eigenpair
(x1, A1), the normalization conditiom’z = 1 is added to the invariance conditioh.{)
wherew € C™ is a normalizing vector withjw|| = 1 andwfz; # 0. This leads to the
extended system

_[(A=ans] _
Fy(z,\) = [ wHe—1 | = 0, (1.2)
which is solved by the paifr., \.) = (z1/(w 1), \1). The Jacobian
A—-N —

is nonsingular at the solution if and only ¥, is algebraically simple. Hence, under the
assumption thak, is simple, Newton’s method can be applied 1a.

Typically the basic Newton step (cfLf]) is modified in that only the normalized new
x-part is used, whereas the newpart is computed as Rayleigh quotieatl]. This yields
the locally quadratically, for Hermitiad even cubically, convergent Rayleigh quotient iter-
ation; cf. [L1, 12]. In the limit, with the optimal normalizing vectan = =z, the inverse
Jacobian 1.3) is bounded from below as follows

A—)\lf —$1:|1 1

1 _ )
||8Fx1(x17>‘1) H - |: x{J 0 o m’
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cf. [13]. Hence, ifz; andy; are almost orthogonal, i.e., X; is strongly ill-conditioned
(which can occur if4 is strongly nonnormal), then the norm of the inverse Jacohiay
be arbitrarily large. The reason lies in the bordering veeto, in the upper block, which
is then almost orthogonal to the missing directigian {y; } in the rangelm(A — A\ 1) =
span {y;}™.

In order to circumvent this possible growth of the inverseolgan, in [L3] an alternative
approach has been introduced using techniques from siityullaeory of nonlinear equa-
tions. There, the eigenvalug is characterized by the following system

comalz]-[45 3][2]-[2] o {420 ao

1% uw'r =

whereu, v are normalized approximations:e, y; , respectively. Sinc€'(\;, u, v) is nonsin-
gularifzu # 0 andy{fv # 0[13], itis also nonsingular fok close to\;. Hence, for such,
the system.4) uniquely defines: = x(\), u = () as functions of\. Moreover, we have
w(A1) = 0andz(\;) = a1 /(ufz1). Applying one Newton stefl — 6, = 6 — u(0)/1(9)
to u(\) = 0 for givenwu, v from the current approximatioh = 6, yields the generalized
Rayleigh quotient

y(0)" Az (0)
y(0)"x(0)

(cf. [13]), wherex = x(0) comes from the primal systeri.€), whereas; = y(0) is part of
the solution of the dual system

COu,v)H {ﬂ _ [(A—QI)H g} {y} _ [0} - {(A—)\I)Heruu:O,

v v 1 vy =1,

0, =

which definesy = y()\), v = v(\) as functions ofA. Note thatu(\) = ©(\), hence
v(A1) = 0 andy()\;) = y1 /v y;,. New bordering right and left eigenvector approximations
are given byu, = z(0)/||z(0)|, v+ = y(8)/|ly(9)|l. This generalized Rayleigh quotient
iteration (GRQI), which is similar to Parlett’s alternadiRQI [12], converges quadratically;
cf. [13].

The so defined matrik’(\, u, v) is independent of the conditioning of the eigenvalue,
since we have in the limit

A=\l - = max —1 1

'r{I 0 B 0'71,—1(14_)\11)7 ’
whereo,,_1(A — A\ I) denotes the smallest positive singular valuedof A\, I. This result
can be derived by forming a unitary decompositiorCdf\;, z1, y1) using the singular value
decomposition

C (A1, 21, 91) | :‘

X1 0
A—NI=[Yiy] [01 0} [ Xy 2117,

whereX; = diag(o1(A — MI),...,0n—1(A — A\11)) is nonsingular. Hence, the norm
does not grow likel /|y x| as in the direct Newton approach. In this sense the matrices o
the alternative method are optimally bordered. When, faydescale problems, the arising
linear systems are solved by Krylov subspace methods, thease of very ill-conditioned
eigenvalues, the better behavior@f! compared t@)F; ! leads to a better performance of
the alternative approach.
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If A, is not simple, then both approaches lead to systems whicéiragalar at the solu-
tion, and if \; belongs to a cluster the inverses will have large norms. ésdltases, block
methods which determine invariant subspaces belongingstthaet of the spectrumi(A)
are the methods of choice. Such block methods for computivagiant subspaces have been
considered already irb[ 7, 14], and all three are discussed i6].] Whereas the standard
Newton approach can be generalized in a straightforwardtaveye block case (cf4] 8, 10]
and P, 1] for block Rayleigh quotient iterations on Grassmann n@dg) it was not clear
whether this is possible for the alternative, singularitgdry based approach. In this paper
we show that this is not the case by constructing a countamgbeawhere the block system is
singular at the solution, so it does not uniquely define thgidarity function.

The next subsection gives a short review on the standard iINewton approach, Sec-
tion 2 introduces the block formulation of the alternative angat4). Section3 characterizes
the so defined operator and its matrix representation. @eétdevelops conditions on the
nonsingularity of the operator, and Sectidrprovides the counterexample, i.e., a singular
operator.

In what follows the spectrum a¥/ will be denoted by\(M).

1.1. The standard block Newton approach.We start with some facts and notation
from [15). Recall that finding an invariant subspate= Im X of dimensionp to A means
finding a matrixX € C™*? with rank X = p and a square matrik € C?*? such that

AX = XL. (1.5)

Now let X = X; with X1 X, = 1, define a right invariant subspade1 X; of A4, i.e.,
AX, = X Ly, hencelL = L; = XFAX,. If Y; € C"¥4, p + q = n, is chosen such that
[X Y5] is unitary, then we obtain the block Schur decomposition

L, H

A=l | g p

] X1 Vo). (1.6)
Obviously, we have\(L1) U A(La) = A(A). If X(L1) N A(L2) = 0, thenIm X is called
asimpleinvariant subspace, afch X, is simple if and only if the linear mapping

T =T(Ly,Ly): Z €CP* v T[Z] = [, Z — ZL, € CPX1

is nonsingular. In what follows we suppose that.X; is a simple invariant subspace.

A normalization conditioV# X = I,,, with W € C"*? andW# W = I,,, in the direct
block Newton approach is added to the invariance conditios),(which yields the extended
block system

AXXL}

o= [ 4555 ][] an

OPXP

for (X, L) as the natural generalization df.®). If XX W € CP*? is nonsingular, which is
equivalent tad(Im W, Im X;) < 7/2, then (L.7) is solved by the pair

(X., L) = (X19,07 'L, D),
where® = (X{IW)~#, The derivative off}y is given by

AS—SL - XM

aFW(X7L)[SaM]: wHg
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One can show thatFyy (X, L.) is a nonsingular linear operator @i*? x CP*? if and
only if Im X is simple; cf., for instance4]. In this case Newton’s method can be applied.
The Newton stegl, ©) — (U,,0,), whereU, =U + 5,0, =0+ M withW =U, is
defined by the linearized block systdi (U, ©) + 0Fy (U, ©)[S, M] = 0, i.e.,

AS—S@—UM} :_[AU—UG}

UHS 0 (1.8)

for the Newton correctioS, M). The upper block of this system is a Sylvester equation. In
order to simplify the solution of this system, the plain Newstep is modified in thdlU, ©)

is chosen as a Schur pair, i.e., such t@at= U AU is upper triangular (diagonal in the
Hermitian case), so that the Bartels-Stewart algoritBhtén be applied. The basis, ob-
tained by Newton’s method is then orthonormalized by theiffesiGram-Schmidt process,
U, = mgs(U, ), and undergoes a Rayleigh-Schur process (Rayleigh-RitzeirHermitian
case) to deliver the final Schur (Ritz) paly,,0,) = rs (U, ); for details see]0] for the
caseA = AT, which extends readily t&l = A, [4] for generalA, and B] for the real
symmetric case.

2. The generalized block system.ln this section we want to extend the alternative
system {.4) for the characterization of an invariant subspace. Thaigdttforward block
generalization of1.4) yields

C(L,U,V)[X,M] =

AX—XL+VM] _ [onxp]7 @2.1)

UHX I,

with given L € CP*? and bordering matricel§, V € C"*?, with UHU = VHV = [, and
unknownsX € C"*P, M € CP*P, The linear operato€'(L, U, V') of (2.1) differs from the
operator in {.8) in that the matrix—U in the upper block is replaced By. If, for a certain
L = L,, there is a solutiof X, M) = (X, M.) with M, = 0, thenX = X, satisfies

R(L,)[X] = AX — XL, =0, (2.2)

i.e., X. then defines an invariant subspate= Im X, of A with spectrum\(L.). Due to
U X, = I, this subspace has dimensien

Under the assumption tha¥” U € CP*? is nonsingular, wherdm X is the sim-
ple invariant subspace we are looking for, the block singfylasystem has the solution
(X, M,) = (X19,0), where® = (XHU)"# andL = L, = & '1L;®. Thus, if the
linear operatoC' (L., U, V') defined in 2.1) is nonsingular, then this solution is unique, and
for L close toL., system 2.1) uniquely defines = X (L), M = M (L) as functions of_,
whereX(L,) = X., M(L,) = 0. In this case, the Newton method can be applied to the
equationM (L) = 0 in order to find its solution..., where thep?-dimensional singularity
functionM : L € CP*P +— M (L) € CP*? is implicitly defined by the block systen2 (1).

3. The operatorC (L, U, V). We wantto have a closer look at the operatgr., U, V)
defined in R.1) at the solution, and start with characterizing the comesiing invariant sub-
spaces. Following15] we construct a similarity transformation which bringsto block
diagonal formdiag(L1, L) with L, Lo from the Schur decompositiod ), i.e.,

Ly 0 LT o

a=pnxd | ) o e o | B G

whereY; = X; — Y,Q, Xy = Y5 + X1 Q, such thafX; X5] is nonsingular an@X; X,] =
[Y1 Yz)~H. Itis easy to see that the block diagonal form is achieveddfanly if ) satisfies

T(L1,L)[Q] = L1Q — QLy = —H = —X{" AY,.



ETNA
Kent State University
http://etna.math.kent.edu

A COUNTEREXAMPLE FOR CHARACTERIZING INVARIANT SUBSPACES 299

Recall that this equation is uniquely solvable, sifites nonsingular due to the simplicity of
Im X1 .
We also need a block Schur decomposition

AT = (¥} %) [ L {,{ﬁ } 91 %], (3.1)

of AH, with unitary [Yl XQ]. Some straightforward computations give

Vi =viD; Y2 = (X, —veQ")D;Y?, Ly =DV, DY?,

X . (3.2)
X=X = (o + Q0,2 Lo =Dy 05,
andd = D, /*Q" L, DY? — DY*L,Q" D'/ whereD, = I +QQ", D, = I+ QY Q.
We can now start investigating the operatdat the solutionZ,, = &' L, ®, where we
assume that/, V satisfyU%U = VHV = [, as above and, additionally, that/’U and
YlHV are nonsingular. More precisely, we wish to know whethersistem

C(L.,U,V)[X,M] =

AX - XL, +VM
Ut X

0
I ] (3.3)

has other solutions thaX,., M,) = (X;®,0), ® = (XHIU)~#, i.e., whether the operator
C(L.,U, V) is nonsingular. Recall that the mappipy, M| — C(L,U,V)[X, M] is linear
in the arguments.

3.1. The mappingX — R(L.)[X] = AX — X L.. In order to gain some insight
into (3.3) we want to examine the nullspace BfL..) and its dimension, i.e., we wish to find
all solutionsX of the Sylvester equatior2(2). ConsideringL, = &~ 'L, ®, we obtain

R=R(L)[X]=AX —XO® 'L;® = {A(X®™") — (XO HL,}® =0.
Writing X&' as
X0 = [X; Xo][X; Xo] 1XO ! = [X) X[V Vo] I X0~ = X1 B+ XoZs
with B =Y X®~!, Z, = Y X®~!, and consideringl X; = X,L;, j = 1,2, we end up

with

RO = A(X1B + X2Z5) — (X1B + XoZ5) L1 = [X1 X] { LB = Bl ] =0.

LoZy — ZyLy

Thus, we haveR = 0 ifand only if L1B — BL, = 0 andLyZ5 — Z5L; = 0. Sincelm X
is simple, the latter condition implieg, = 0. Hence, the kernel is given by

ker R(L,) = {X : AX — XL, =0} ={X = X;B®: [,B— BL, =0}.  (3.4)

However, the dimensiofi := dim ker R(L.) seems to be less clear. Using the Jordan decom-
positions ofL; we obtain the bounds < p < p?, wherep = pif L, hasp different eigenval-
ues which is the generic case, gihe p? if L1 = \; I,,. In the latter casé. B — BL; =0

is solved by anyB € CP*P. Gantmacherq] gives an exact formula fgs, namely

P=Y_> bap:

a=18=1
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when L, has the elementary divisof& — A1), (A — A2)®2, ..., (A — \,)%, wheres; +
s2 + ...+ s, = p, andd,gs is defined as the degree of the greatest common divisor of the
polynomials(A — A\, )% and(A — A\g)®s.

With p as above we obtain

ker R(L.) = {X : AX — XL. =0} =span{X® ... Xx©®},

with X() = X, B;®, and{B;}’_, are linearly independent solutions bf B — BL, = 0.
Note thatB; = I, is always a solution and defings, = X; ®.

3.2. Unitary decomposition. For the analysis of the operat6t(L.,, U, V) it turned
out to be more promising to treat systetd) in terms of vector notation using Kronecker
products. This will lead to an SVD-like decomposition. Asial for a matrixA = (a;;) €
C™>7, the vectorvec(A) = (@11, .., Qm1, 012, -+, Q1n, -, Gmp)? € C™" contains the
entries ofA in columnwise order.

Writing vec(R(L.)[X]) = R(L.) - vec(X), vec(VM) = V - vec(M), vec(UH X) =
U -vec(X),whereR(L,) = [, A—LT®1,,V =L,oV, U = I,@U", equation 8.3
can equivalently be written as the standard linear system

B ™= [ ] L] =[]

Actually, the matrix

C(L,)=C(L., U V) = {RL({%*) ]ﬂ e C(np+p?)x (np+p?) (3.5)
forms the matrix representation of the operaftfi_.., U, V'), and it has the same structure
as the matrix in systeml(4) which characterizes the algorithm GRQI. Thus, the skew non
Hermitian bordering of the eigenvalue problem designedetmyoptimal condition numbers
is transferred to the block case.

We are interested in a unitary block SVD-like reduction & targe matrixC. Therefore,
from now on we choos¢X W}?_, with X = X, B;® as orthonormal basis of the kernel
of R(L..) with respect to the scalar product in the:( X )-space, i.e., we chood®, such that
vee(X ) vec(X W) = trace(®H B B;®) = 6;; (i,j =1,...,p).

It is easy to verify that a basis faer R(L.), whereR(L.) is defined by

R(L)TY) = AHY —yLH,

is given by{Y®}?_  with V() = ¥, D;/*BH&~H; cf. (3.1) and @.2). The matrix repre-
sentation of this operator is juRt(L.. )" = I, A — L,®1,,. Then one can find’; € CP*?
such thaty ) = {y;D}/>CH&~H}?__ is an orthonormal basis of this nullspace. Finally,
the p-dimensional bases constructed above can be extendedsidtkt?) = X, B,®}"- |
and{y () = SﬁD}”Cﬁ@‘H}il are orthonormal bases of thé-dimensional linear spaces

{X =X,B®:BeCr}, {Y=VD/?CHo H.Ceccrv),

respectively.
Let £() = vec(B;®), h(®) = vec(D\/*CH&—H). Then, introducing the vectors

2@ =vec(XW) = (I® X1)fD,  y =vec(Y") = (I @ Y1), (3.6)
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we finally define the matrice¥ = {Xl | X0y |)~(22} Y = [Y/l | Vo1 |}722} , Where
X = {xwp) @Y g0 D) | B) x(l)} ’
andY is decomposed analogously. He&, andY; are chosen such thaf, Y are unitary.

Note thatker R(L.) = Im(Xs3), ker R(L, )" = Im(Yay), i.6., R X2 = 0 andR¥ Y5y = 0.
Thus, in the style of the singular value decompaosition, we gmwith

. - }:/1HR)§1 ?1HRX21 Y1 RX22 Y11 Y12 0
VHR(L)X = |[VHRX: YHRXo YH{RXm|=|S2n B 0| =3, (37)
VHRX, YHRXy YHRX: 0 0 0

andC(L.) can be decomposed in the following way

~ H
=[5 §]-[5" 5[4 tJewon]§ 2"
where
5 S YHY gi iéi 8 1211
C(L*’U’V):_[MHX 0 }_ 0 0 0 Vo (3.8)

uft - ul uf oo

4. Conditions for nonsingularity. In what follows we choose the orthonormal border-
ing matricesU = X, V = Y;, which are optimal in that they minimizgU/ 7 X,)~!||,
|(VHY;)~1||. This choice impliesb = (U7 X,)~! = I, hence, X, = X;, L. = L, and
Uy =V, =0in (3.9). ltalso follows thaf /|42 ] and[ VE | VH | are unitary.

This section starts with equivalent statements on the ngnfarity of the block matrix
C(L.,U,V) = C(Ly, X1,Y1) and provides a theorem on the general feasibility of matrix
borderings.

THEOREM 4.1. Let X; € CP*" with XF X, = I,, AX; = XL, define a simple
invariant subspacém X, of A € C**". Moreover, lett; € CP*", with Y{'¥; = I, and
ATy, = V1L, define a corresponding invariant subspdeeY; of A¥; cf. (3.1). Define
X,, Y5 according to(1.6) and (3.1). Then, the following statements are equivalent:

() The linear operatoiC(Ly, X1, Yl) defined in(2.1) (or, equivalently, its matrix rep-
resentatiorC (L, X, Yl) defined in(3.5), or its transformed ver5|od(L1, X, Yl)
defined in(3.8)) is nonsingular.

(i) The matrixX; defined in(3.7) is nonsingular.

(i) We have\(P) N A(L1) = 0, whereP = (X2 AY,)(XJvy) !

Proof. Let us prove the equivalence @f and(ii). Due to the choic&/ = X,V = Y3,
the matrixC(L., X1, Y7) reduces to

5 D11 Sio
C(Ly) = |z
) [Eéﬁ 52]
with $15 := [212]0]0], £a; := [£4]0]0], and the nonsingular matrix
222 0 Vgl 0 0 Z/{ZI
SQ = 0 0 VQQ with 52_1 = 0 0 Z/{22

Ui Uz 0 VE VE  —VHSUn
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Therefore, the Schur complemetit of S, exists, anotf(Ll,Xl, f/l) is nonsingular if and
Only if S1is nonSingular. Bub; = X1 — 21252_125[1 = X11-

Last, we show the equivalence @f and(iii). Equation 8.7) provides:;; = Y/ RX;.
Now decompose the unitary matti in two instead of three parts

X = [X;| Xo) = [zP) ... @D | 207 ()],

i.e., XQ = [Xgl X~22]. Sincex(i)Hx(j) = l‘(Z)H(I X Xl)f(j) =0for: = p2 + 1, ..., NP,
j=1,...,p% (cf. (3.6)), the orthogonality conditions yield 7 X () = 0 and, consequently,
2@ (I ® X;) = 0 which is equivalent t§ ® X)) = vec(X# X®) = 0. Hence, and
because we hav&{Y, = 0, the existence of matrice; of sizeq x p follows, such that
X =Y, K;. This givesz® = (I @ Y2)k®) wherek® := vec(K;).

SettingK; = [k ... k®*+D] leads to the representation, = (I ® Y»)K,. Because
of

2@ 20) = kO (T @ V)T @ Ya)kD) = k0" k) = 6,

the matrix X, is unitary. Analogously, one obtai§ = (I ® X,)N;, where the matrix
Ny = [n(") . n®’+D] is unitary. Applying both results gives

Y =YHRX, = NI (I o XIYR(I o Yy)K,
= N [To Xf1 A, - 1T © X8| Ky
— NH [I ® (XFAY)(XEY,) ' - LT ® I} (I o XEV,)K,.

Since all other factors are nonsingulat;; is nonsingular if and only if the inner factor
I ® P — LT ® I is nonsingular wheré := (X4 AY,)(X4Y,)~'. But this is equivalent to
the nonsingularity of the mappiril§(P, L,)[Z] = PZ — ZL,, i.e., to the condition
AMP)NALy)=0.0

SinceXY, = D;'/* and XF AY, = D;*
convenient expression fd?, namely

"*(DyLy — Q¥ L,Q), we obtain a more

P= D;/2(L2 - QHLlQ)D;/Qa
which made it possible to construct our counterexampleSsation5.

4.1. Feasible borderings.The analysis of block matrices with four blocks gives the
following general result on nonsingularity.
THEOREM4.2. Let

G- |:G11 G2 }
Gy G|’
WhereG11 S (Cnxn’ Glg, Go1 € CnXp, Gog € CP*P and let
X
_ (n+p)xp
X = {M] eC

such thatker[G1; G12] = Im X. Then, the block matri; is nonsingular, if and only if
rank [G11 G12] = n and[G4) GE5]X is nonsingular.
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Proof. For the nonsingularity of the block matriXit is clearly necessary thaf; G12]
has full row rank, i.e., the dimension of the kerne[@f; G12] equalsg. Suppose there exist
x € R™, m € RP, such that

x| G111 Gio T | 0 Gz + G1om =0,
G{m]_{Gg Gﬁ} {m}_[O} = {G Br+ Glm=0. (4.1)
Then the upper block implies
[:”L:| S ker[GH Glg] =ImAX,

i.e.,x = Xs,m = Ms, for some vectos. Inserting this representations into the lower block
of equation ¢.1) yields GZ Xs + GIL,Ms = 0. Since[GL] GIL]X is nonsingular, we have
s =0, and hence: = 0 andm = 0. IZI

A similar statement holds if one considers the left partGoinstead of the upper one.
Note, thatp > dimker(Gy,) is feasible. Moreover, the nonsingularity @] GZ,)x is

equivalent to
G
£ <Im {Gzz] ,ImX) < 5

Applying Theorend.2to our case, i.e., to the matri( L, X1, Yl), we consider the left
block [R* L{]H. ThenRzx = 0 holds, if and only ifz is an element from the kernel, i.e., if
x = Xoo&. Furthermoreldz = 0 yieldst/H Xy0¢ = USs¢ = 0implying € = 0, i.e., the
full rank condition is always fulfilled. In this sense, therbering withi/ is feasible. When
looking at the conjugate transposed@fwhich is required for the computation of the left
invariant subspace, the feasibility Bfis easily verified as well.

3

5. The counterexample.While trying to prove the nonsingularity of the linear opera-
tor C(Ly, X, Yl) we found a counterexample, i.e., a singular mafiiX, X, Yl) Using

Theoremd.1 (izi) we eventually generated the following matrix
1 1|-1 0 -1
A: O 0 O 1 O :[Xl YQ] A[Xl YQ],
0 o] 0 2 1 0 | L2
0 o 0 0 3
where[X; Yy | = [e1 ealeseses],ie, L. = [y, X, = X; andAX; = X L4, ie.,

Im X, is a simple invariant subspace dfwith spectrum\(L,) = {1, —1}. The induced
14 x 14 matrix

_ 77T
et vy = [1045 B 0T T5%]

I®X{ 0
is singular. Here, we have used the exact invariant subsga¢€ spanned by

T
V:E:{1()1 0 0}7

01 0 -1 -1

though it is not orthonormaI.A Nevertheless, the rankCok the same fol/ = Y; and its
orthonormalized versiol’ = Y; = Y (Y{vy)~1/2.
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The upper block o€ (L) has full row rankn - p = 10, the left block has full column
rank 10, butC(L;) has rank drop 1. Examination of the structure of the involwetrices
shows where the singularity results from. We check condlitioi) of Theorem4.1 Recall,
that P = DY*L,D3/? — DY?QHL,QDY?. Since the first column of., is zero, the
first column ofDé/QLQD;/2 is zero, as well. Hence, WhenevEé/QQHLlQDé/2 is such
that the first column equals;e;, where); and—)\; are eigenvalues af, then—); is an

eigenvalue ofP, too. If p > ¢, then the eigenvalues @5/ *Q* L,QDL/* form a subset of

the eigenvalues o, becausd.; isp x p andQD;/2 is p x ¢. Otherwise, as holds for the
example matrix whergp = 2 andg = 3, no correlation in general exists. To make a general
statement seems quite complicated, since the matige®), H, L, and L, depend on each
other. The exceptional matrix arises through interactiallof these.

6. Conclusions and outlook. The counterexample presented in this paper shows that
a straightforward generalization of the singularity thebased approach for characterizing
invariant subspaces from= 1 top > 1 does not work, in general.

One possibility to overcome this problem would be to chadgg,) by introducing
a bottom right blockl” € Cr**r” instead of the zero matrix, i.e., to work with

IRA-LT®I IQV
Cmod(L){ IQUH T }

Of course, there is always a matfixsuch that is nonsingular; cf. Theoremh.2. However,
in order to implement the method efficiently, the maffixshould have the forfd = I ® T,
with T € CP*P since then

IQA-LT"®I 1I®V
Cmod(L): |: I®UH I®T:|

corresponds to the operat6,,,;(L) defined by

Cnoa(L)[X, M] = [AX ~ XL+ VM}

URX +TM

Anyway, this restriction in the choice @f reduces the degree of freedom frafto p?, and
it is an open question whether sucti’aan be found.

Secondly, instead of changing the matrix we could ask foctvisiasses of matrices the
additional condition stated in Theorefnl, part(ii), is satisfied, but this question is not yet
answered.
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