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CROSS-GRAMIAN BASED MODEL REDUCTION
FOR DATA-SPARSE SYSTEMS∗

ULRIKE BAUR† AND PETER BENNER†

Abstract. Model order reduction (MOR) is common in simulation, control and optimization of complex dynam-
ical systems arising in modeling of physical processes, and inthe spatial discretization of parabolic partial differential
equations in two or more dimensions. Typically, after a semi-discretization of the differential operator by the finite
or boundary element method, we have a large state-space dimension n. In order to accelerate the simulation time
or to facilitate the control design, it is often desirable toemploy an approximate reduced-order system of orderr,
with r ≪ n, instead of the original large-scale system. We show how to compute a reduced-order system with
a balancing-related model reduction method. The method is based on the computation of the cross-GramianX ,
which is the solution of a Sylvester equation. As standard algorithms for the solution of Sylvester equations are of
limited use for large-scale (possibly dense) systems, we investigate approaches based on the iterative sign function
method, using data-sparse matrix approximations (the hierarchical matrix format) and an approximate arithmetic.
Furthermore, we use a modified iteration scheme for computing low-rank factors of the solutionX . The projection
matrices for MOR are computed from the dominant invariant subspace ofX . We propose an efficient algorithm for
the direct calculation of these projectors from the low-rank factors ofX . Numerical experiments demonstrate the
performance of the new approach.
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1. Introduction. We consider linear time-invariant (LTI) systems of the following form

Σ :

{

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0,
(1.1)

with state matrixA ∈ R
n×n, andB ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m. The system (1.1),
denoted byΣ(A,B,C,D), is assumed to be square (m = p) and can be single-input/single-
output (SISO) (m = p = 1) or multi-input/multi-output (MIMO) (m = p > 1). Furthermore,
we assume stability of (1.1), i.e., all eigenvalues of the coefficient matrixA, denoted byΛ(A),
are assumed to be in the open left half planeC

−. In practice, e.g., in the control of partial
differential equations, the system matrixA often comes from the spatial discretization of
some partial differential operator. In this case,n is typically large and the system matrices
are sparse. On the other hand, boundary element discretizations of integral equations lead
to large-scaledensematrices that often have a data-sparse representation [23, 32]. Hence, in
general, we will not assume sparsity ofA, but we will assume that a data-sparse representation
of A exists. In this case we call (1.1) adata-sparsesystem.

Model order reduction (MOR) aims at approximating a given large-scale system (1.1) by
a system of reduced orderr, r ≪ n. In system theory and control of ordinary differential
equations, balanced truncation (BT) [29] and related methods are the methods of choice since
they have some desirable properties: they preserve the stability of the system and provide
a global computable error bound which allows an adaptive choice of the reduced order. The
basic approach relies on balancing the controllability Gramian and the observability Gramian
of Σ(A,B,C,D). A variant of the classical BT method is based on the cross-Gramian [1,
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3, 18, 34]. The major part of the computational complexity of both MORapproaches stems
from the solution of large-scale matrix equations, i.e., oftwo Lyapunov equations for BT
or of one Sylvester equation for the cross-Gramian (CG) approach. In [1], the reduced-order
system is computed from the eigenspaces associated with large eigenvalues of then×n cross-
Gramian. This is computationally very demanding and thus fails for the problems considered
in this work. The approaches in [3, 18, 34] belong to the class of Krylov projection methods
as they iteratively compute low-rank approximations to thecross-Gramian by an implicitly
restarted Arnoldi method. An approximately balanced reduced-order system is obtained by
a partial eigenvalue decomposition of this Gramian.

Here, we will discuss an alternative for large-scale, data-sparse systems, based on the
sign function method for Sylvester equations [7, 12]. The derived CG approach is described
in Section2, which is divided into three parts. First, Section2.1 gives the background for
balancing-related MOR. Then, the efficient solution of Sylvester equations by a data-sparse
sign function method [5] is reviewed in Section2.2. Based on the computed approximate low-
rank factors of the Gramian, we propose an effective computation of the projection matrices
for MOR in Section2.3. Several numerical simulations demonstrate the performance of the
new method in Section3 and concluding remarks follow in Section4.

2. Approximate cross-Gramian approach. In the following section we shortly review
the main properties of BT and the close connection to the CG approach.

2.1. Background. BT [29] eliminates the states corresponding to then − r smallest
Hankel singular values(HSVs) from a balanced realization ofΣ(A,B,C,D) to obtain a sys-
tem of orderr ≪ n [36, Section 3.9], [2, Section 7.1]. The HSVs of (1.1) are given by the
square roots of the eigenvalues ofPQ, i.e.,

Λ(PQ) = {σ2
1 , . . . , σ2

n}, σ1 ≥ · · · ≥ σn ≥ 0,

whereP denotes the controllability Gramian whileQ is the observability Gramian of (1.1).
The reduced-order model

Σ̂ :

{

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2.1)

with Â ∈ R
r×r, B̂ ∈ R

r×m, Ĉ ∈ R
p×r, D̂ ∈ R

p×m, is achieved by applying the blocks
Tl, Tr of the balancing transformation matrixT (TPQT−1 = diag(σ2

1 , · · · , σ2
n)), defined by

T =

[

Tl

∗

]

, T−1 = [Tr, ∗ ], with TT
l , Tr ∈ R

n×r,

to (1.1) as follows

(Â, B̂, Ĉ, D̂) = (TlATr, TlB,CTr,D). (2.2)

The worst output error between (1.1) and (2.1) is bounded [19] (if x(0) = 0) by

‖y − ŷ‖2 ≤ 2

( n
∑

j=r+1

σj

)

‖u‖2, (2.3)

with ‖ · ‖2 denoting theL2-norm for square-integrable functions on[0,∞). This error bound
provides a reasonable way to adapt the selection of the reduced orderr. In addition, the



ETNA
Kent State University 

http://etna.math.kent.edu

258 U. BAUR AND P. BENNER

reduced-order system remains stable and balanced with the same HSVs{σ1, . . . , σr} of the
original system.

In 1983, a new system Gramian was defined for stable SISO systems,

X :=

∫ ∞

0

eAtBC eAtdt, (2.4)

which contains information on controllability of the system as well as on observability [16].
Therefore,X ∈ R

n×n is called thecross-Gramianof the system (1.1). The definition was ex-
tended to symmetric MIMO systems [17, 28]. Note that a realizationΣ(A,B,C,D) is called
symmetric if the corresponding transfer function matrix (TFM) G(s) = C(sI−A)−1B+D is
symmetric. This is trivially the case for systems withA = AT , B = CT , D = 0. In [17, 28],
properties of the cross-Gramian were derived which underline the usefulness ofX for the
purpose of model order reduction. It was shown [16, 17, 28] that for SISO and for symmetric
MIMO systems, the cross-Gramian satisfies

X 2 = PQ. (2.5)

By this identity, the HSVs ofΣ(A,B,C,D) are analogously given by the magnitude of the
eigenvalues ofX ,

σi = |λi(X )|, for i = 1, . . . , n.

It is possible to compute a reduced-order system directly from the cross-GramianX . Note
that under state-space transformations, the eigenvalues of X are invariant

X̃ =

∫ ∞

0

eTAT−1tTBCT−1 eTAT−1tdt = TXT−1.

If X is diagonalizable andT is a balancing transformation, then

X̃ = diag(λ1, · · · , λn), with |λ1| ≥ · · · ≥ |λn|,

and the reduced-order system is simply given by the firstr states of the balanced realiza-
tion. For SISO and symmetric MIMO systems, the system dynamics are projected onto the
eigenspaces associated with the largest eigenvalues ofX . The computed reduced-order model
has the same properties as in BT model reduction, i.e., stability is preserved and a computable
global error bound exists. Note that this can also be done fornon-symmetric, square MIMO
systems (withm = p), but without the theoretical background provided for the symmet-
ric case, and therefore without any guarantee for the quality of the reduced-order system.
In Section3 it is shown for a numerical example that such a reduced-ordersystem can be
a reasonable approximation to a non-symmetric MIMO system as well. An alternative is pro-
posed in [34] where a non-symmetric, possibly non-square MIMO system isembedded into
a symmetric, square system of the same order but with more inputs and outputs.

In the following we describe an efficient implementation forMOR by a CG approach,
using an approximate sign function solver for the solution of the Sylvester equation, and
a low-rank product QR algorithm for the computation of the projection matrices. This CG
approach yields an alternative for the widely used BT methodat approximately the same
costs. A further motivation for this approach is given in [34] by the following consistency
argument. In usual BT implementations, suitable for large-scale systems, the basis setsTl

andTr for projection are computed from approximations to the exact controllability and ob-
servability Gramians. Since both Gramians are approximated separately it can not be ensured
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that the same basis sets would have been computed by the full system Gramians. In other
words, there might be a gap between the approximation errorsof P andQ, which influences
the computed reduced-order system in some way. This problemdoes not occur if we compute
projection matrices from an approximation to the cross-Gramian. Moreover, the examples in
Section3 indeed demonstrate that the CG approach sometimes has advantageous properties
compared to BT.

2.2. Efficient solution of large-scale Sylvester equations. The cross-Gramian (2.4) is
equivalently given by the solution of the Sylvester equation [27]

AX + XA + BC = 0. (2.6)

For the numerical solution of large-scale Sylvester equations we consider the modified sign
function method as described in [5]. This method combines the iteration scheme with the
hierarchical (H) matrix format [23, 24] and the corresponding approximate arithmetic [20,
22], and computes low-rank factors ofX . The overall procedure is shown in Algorithm1
below, for more details (including scaling strategies) we refer to [5]. In the following, we
describe some of the important steps of the algorithm.

The matrix sign function gives an expression for the solution X of the Sylvester equa-
tion (2.6) [31] by

sign

[

A BC

0 −A

]

=

[

−I 2X
0 I

]

.

In large-scale computations it is of particular interest tocompute low-rank solution factors
if X has low rank (rank(X ) ≪ n) or, at least, low numerical rank. The latter case is of
particular relevance; in many large-scale applications itcan be observed that the eigenvalues
of X decay rapidly, see e.g., [4, 21, 30]. Then, the memory requirements can be consider-
ably reduced by computing low-rank approximations to the full-rank factors directly. Thus,
X ≈ Ỹ Z̃, with Ỹ ∈ R

n×nτ (X ), Z̃ ∈ R
nτ (X )×n, exploiting the expected low numerical rank

of X : nτ (X ) ≪ n. The sign function can be modified for the direct calculationof such
low-rank factors [7, 12]. The numerical ranknτ (X ) is determined during the iteration by
a given thresholdτ , applying rank-revealing QR factorizations in the corresponding steps of
Algorithm 1 below. Note thatQC in step 12 of Algorithm1 can be directly accumulated
in Bk+1 and needs not be generated explicitly. However, the computational complexity of
the method grows cubically and storage requirements grow quadratically withn. To avoid
this effect, the large-scale matrixA and the iteratesAk are approximated in the data-sparse
H-matrix format (denoted byAH) during the sign function iteration. The hierarchical matrix
arithmetic (⊕, LUH, H-forward/backward substitution) is used to reduce the computational
cost in these iteration parts. The approximate operations are of linear-polylogarithmic com-
plexity,O(n log2(n)k(ǫ)2), wherek(ǫ) denotes the blockwise ranks in anH-matrix approx-
imation, which are determined by a parameterǫ to obtain a relative errorO(ǫ). For detailed
descriptions of theH-matrix format and arithmetic, see, e.g., [14, 20, 22, 24]. Thus, the over-
all complexity of the data-sparse sign function iteration,as summarized in Algorithm1, is
linear-polylogarithmic.

The described algorithm is especially suitable for large-scale systems obtained by the
spatial discretization of parabolic partial differentialequations which might have fully popu-
lated system matrices. Note that, in principle, all methodswhich compute low-rank factors
of X , e.g., [7, 8, 12], can be used in the CG approach for MOR as described in the next
section.
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ALGORITHM 1 (Calculate approximate factors̃Y , Z̃ of X for AX + XA + BC = 0).

INPUT: A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, convergence tolerance tol, rank drop tolerance

τ .
OUTPUT: Approximations̃Y andZ̃ to full-rank factors of the solutionX .

1: A0 ← AH
2: B0 ← B

3: C0 ← C

4: k = 0
5: while ‖Ak + In‖ > tol do
6: [L,U ]← LUH(Ak)
7: SolveLW = (In)H byH-forward substitution.
8: SolveUV = W byH-backward substitution.
9: Ak+1 ←

1
2 (Ak ⊕ V )

10: Bk+1 ←
1√
2

[

Bk V Bk

]

11: Ck+1 ←
1√
2

[

Ck

CkV

]

12: Compute a rank-revealing QR factorization

Ck+1 = QC

[

R11 R12

0 R22

]

ΠC

with ‖R22‖2 < τ‖Ck+1‖2 andR11 ∈ R
s×s.

13: Compress rows ofCk+1 to sizes:

Ck+1 ← [R11, R12 ] ΠG.

14: Compute a rank-revealing LQ factorization

Bk+1QC = ΠB

[

L11 0
L21 L22

]

QB

with ‖L22‖2 < τ‖Bk+1‖2 andL11 ∈ R
t×t, (QB)11 := QB(1 : t, 1 : s).

15: Compress columns ofBk+1QC to sizet:

Bk+1 ← ΠB

[

L11

L21

]

.

16: if t < s then
17: Multiply Ck+1 from the left by(QB)11 ∈ R

t×s: Ck+1 ← (QB)11Ck+1.

18: else
19: Multiply Bk+1 by (QB)11 ∈ R

t×s: Bk+1 ← Bk+1(QB)11.
20: end if
21: k = k + 1
22: end while
23: Ỹ ← 1√

2
Bk, Z̃ ← 1√

2
Ck
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2.3. Computation of the projection matrices. We compute the projection matrices
Tl andTr for MOR as the left and right dominant invariant subspaces ofX by particular
Schur decompositions of̃Y Z̃. We propose a numerically efficient and accurate algorithm for
the computation of these dominant invariant subspaces. First, a basis for the right invariant
subspace of̃Y Z̃ corresponding to ther largest eigenvalues is computed,

(Ỹ Z̃)Vr = VrΛ1,

whereΛ1 = diag(λ1, . . . , λr) so that|λr| ≥ |λr+1| and the eigenvalues are in non increasing
magnitude order. The remainingn − r eigenvalues of̃Y Z̃ are smaller in magnitude. The
columns ofVr ∈ R

n×r span the dominant right invariant subspace ofỸ Z̃. In practice, we
compute a Schur decomposition of the “small” matrix productZ̃ Ỹ ∈ R

nτ (X )×nτ (X ). The
Schur decomposition will be done without explicitly computing the product of the two factors
Z̃ andỸ using the followinglow-rankversion of the so-calledproduct QR algorithm.

1. Compute an economy-size QR decomposition ofỸ with column pivoting:

Ỹ = Q1R1Π
T , Q1 ∈ R

n×nτ (X ), R1 ∈ R
nτ (X )×nτ (X ),

whereQ1 has orthonormal columns,R1 is upper triangular andΠ is a permutation.
2. Multiply and permute

Ẑ ← Z̃Q1 ∈ R
nτ (X )×nτ (X ),

Ŷ ← R1Π
T ∈ R

nτ (X )×nτ (X ).

3. Compute the product Hessenberg form ofẐ Ŷ

H1H2 ← UT
1 ẐU2U

T
2 Ŷ U1,

whereH1 is upper Hessenberg,H2 upper triangular,U1 andU2 are orthogonal [26,
Section 4.2.3].

4. Compute the product Schur decomposition

S1S2 ←WT
1 H1W2W

T
2 H2W1,

whereS1 is in real Schur form,S2 is upper triangular,W1 andW2 are orthogo-
nal [26, Section 4.2.1]. The eigenvalues are ordered by descendingmagnitude.

The low-rank product QR algorithm yields the invariant subspace ofZ̃ Ỹ by the column span
of U1W1,

Z̃ Ỹ U1W1 = U1W1 S1S2.

By ordering the eigenvalues, the dominant right invariant subspace of the approximate cross-
GramianỸ Z̃ corresponding to ther largest (in magnitude) eigenvalues can be derived using
the firstr columns ofU1W1 (denoted by the MATLAB colon notationU1W1(:, 1 : r)) setting
Vr := Ỹ (U1W1(:, 1 : r)) ∈ R

n×r. Note that the sizer of the reduced-order system can be
easily determined by a given error tolerance using the criterion

min

{

r ∈ N

∣

∣

∣

∣

2
n

∑

j=r+1

|λ̃j(Ỹ Z̃)| ≤ tol

}

.

The left dominant invariant subspace ofỸ Z̃ is given by the column spanWl ∈ R
n×r satis-

fying

WT
l (Ỹ Z̃) = Λ1W

T
l .
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We can computeWl analogously toVr via the low-rank product QR algorithm applied to
Ỹ T Z̃T . The projection matrices for MOR are obtained similarly to the balancing-free SR
method[35] by an orthogonalization ofVr and Wl. For this purpose we compute two
economy-size QR decompositions

Vr = QrRr and Wl = QlRl, Qr, Ql ∈ R
n×r,

settingTr = Qr, Tl = (QT
l Qr)

−1QT
l , and obtain a reduced-order system by projection (2.2).

All steps of the cross-Gramian approach are summarized in Algorithm2.

ALGORITHM 2 (Approximate Cross-Gramian approach for LTI systems (1.1)).

INPUT: AH ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, D ∈ R

m×m, tol, τ , ǫ.

OUTPUT: Â ∈ R
r×r, B̂ ∈ R

r×m, Ĉ ∈ R
m×r, D̂ ∈ R

m×m; reduced orderr, error boundδ.

1: Compute low-rank factors̃Y ∈ R
n×nτ (X ), Z̃ ∈ R

nτ (X )×n of the cross-GramianX by
Algorithm 1.

2: Compute right invariant subspaceU1W1 of Z̃ Ỹ by the low-rank product QR algorithm
with eigenvalues in non increasing order|λ̃1| ≥ · · · ≥ |λ̃nτ (X)|.

3: Adaptive choice ofr by tol: δ = 2
nτ (X )
∑

j=r+1

|λ̃j | ≤ tol.

4: Compute right dominant invariant subspaceVr ∈ R
n×r of Ỹ Z̃:

Vr = Ỹ (U1W1(:, 1 : r)).

5: Compute right invariant subspaceU1W1 of Ỹ T Z̃T by the low-rank product QR algo-
rithm.

6: Compute left dominant invariant subspaceWl ∈ R
n×r of Ỹ Z̃:

Wl = Z̃T (U1W1(:, 1 : r)).

7: Compute QR decompositionsVr = QrRr, Wl = QlRl and projection matrices

Tr = Qr, Tl = (QT
l Qr)

−1QT
l .

8: Compute reduced-order model:

Â = TlAHTr, B̂ = TlB, Ĉ = CTr, D̂ = D.

3. Numerical results. All numerical experiments were performed on an SGI Altix 3700
(32 Itanium II processors, 1300 MHz, 64 GBytes shared memory, only one processor is used).
We make use of the LAPACK and BLAS libraries for performing the standard dense matrix
operations and include the routine DGEQPX of the RRQR library [13] for computing the
rank-revealing QR factorization. For theH-matrix approximation we employ HLib 1.2 [15].
The parameterǫ which determines the desired accuracy in each matrix block (see at the end
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of Section2.2) is chosen in dependency on the rank drop toleranceτ , by τ = ǫ = 10−6.
This is inspired by preliminary work for an approximate BT method also using theH-matrix
format for the solution of the arising large-scale Lyapunovequations [6]. It is shown in [6] by
a rough error analysis that the choiceτ = ǫ leads to an error of sizeǫ in the computed Hankel
singular values as well as in the projection matrices, and thus in the reduced-order model.
The results obtained by the CG method are compared with results from this approximate BT
method.

Besides the data-sparse solver for Sylvester equations in Algorithm 1, all computational
steps of the cross-Gramian approach (Algorithm2) are computed in dense arithmetic. For the
product QR algorithm, we employ the routineMB03VD from the SLICOT Library [9, 33] to
compute the product Hessenberg form of a product of matriceswithout evaluating any part
of the product. The matrix product is transformed further toproduct real Schur canonical
form by the HAPACK [25, 26] routine DHGPQR, and reordered byDTGSRT such that the
magnitudes of the eigenvalues appear in non increasing order.

Note that, in order to measure the accuracy of the computed reduced-order systems, we
have to analyze the influence of theH-matrix error introduced by the approximation of the
original coefficient matrixA in H-matrix format. Thus, the data-sparse MOR methods are
actually applied to

GH(s) := C(sI −AH)−1B + D.

We split the approximation error into two parts using the triangle inequality:

‖G− Ĝ‖∞ ≤ ‖G−GH‖∞ + ‖GH − Ĝ‖∞, (3.1)

where‖ · ‖∞ denotes theH∞-norm of a rational transfer function. For the approximate
BT method, error bounds are derived in [6]. We recall the bound for the specific case of
systems with symmetric, negative definite matrixA (andAH, respectively). WithĜ as TFM
associated to the reduced-order system (2.1), obtained by applying BT toGH, and some
assumptions [6, Theorem 4.4], the approximation error (3.1) is bounded by

‖G− Ĝ‖∞ ≤
1

λ1(A)2
‖C‖2‖B‖2O(ǫ) + 2

( n
∑

j=r+1

σ̃j

)

, (3.2)

whereλ1 is the largest eigenvalue ofA andσ̃j are the HSVs ofΣ(AH, B,C,D). Note that
|σj − σ̃j | ∼ ǫ by choosing the tolerances accordingly, i.e.,τ = ǫ andσ̃j = |λ̃j |. If all the
involved quantities are computed with an approximation error of orderO(ǫ), this bound is
also valid for SISO and symmetric MIMO systems reduced by theCG approach, due to the
theoretical equivalence to BT.

As a basis for our test examples, we consider a convection-diffusion equation in the unit
squareΩ = (0, 1)2 with a heat source in some subdomainΩu:

∂x

∂t
(t, ξ) = ∇T (a(ξ) · ∇x(t, ξ)) + c · ∇x(t, ξ) + b(ξ)u(t), ξ ∈ Ω, t ∈ (0,∞), (3.3)

whereb(·) = XΩu
andXΩu

is the characteristic function of the control domain. The diffusion
coefficienta is a material-specific quantity depending on the heat conductivity, the density
and the heat capacity. The convective term is described byc ∈ R

2. We impose homogeneous
Dirichlet boundary conditions and discretize with linear finite elementsϕ1, . . . , ϕn andn

inner grid pointsξi. In the weak form of the partial differential equation we usea classical
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Galerkin approach:x(t, ξ) ≈
∑n

i=1 x̃i(t)ϕi(ξ). For then unknownsx̃i we obtain a system
of linear differential equations

E ˙̃x(t) = −Ãx̃(t) + B̃u(t), (3.4)

with matricesE, Ã, B̃ defined by the entries

Eij =

∫

Ω

ϕi(ξ)ϕj(ξ) dξ, Ãij =

∫

Ω

a(ξ) 〈∇ϕi(ξ),∇ϕj(ξ)〉+ 〈c,∇ϕj(ξ)〉ϕi(ξ) dξ,

B̃i1 =

∫

Ω

b(ξ)ϕi(ξ) dξ, for i, j = 1, . . . , n.

The output equation is given by a measurement of the temperature in a small subdomainΩo:

y(t) = C̃x̃(t), where C̃1j =

{

1, ξj ∈ Ωo,

0, otherwise,
for j = 1, . . . , n.

The number of basis function of the finite element ansatz space is chosen asn = 16, 384.
We approximate then× n mass matrixE in H-matrix format and transform the equation to
standard form using a formatted Cholesky decompositionE = LLT such thatx := LT x̃.
The resulting state matrixA = −L−1ÃL−T is also stored asH-matrix. Thus, we have
a large-scale stable LTI system as introduced in (1.1), with B = L−1B̃ ∈ R

n×1 andC =
C̃L−T ∈ R

1×n, i.e., a SISO system.
First we choose the diffusion constant asa(·) ≡ 1.0 and setc = (0, 0)T , thus equa-

tion (3.3) simplifies to the non stationary heat equation. We compare the frequency response
errors‖GH − Ĝ‖∞, obtained by the cross-Gramian approach, with those of the approximate
BT method [6]. TheH∞-norm error betweenGH andĜ is estimated by the pointwise ab-
solute values computed at 20 fixed frequenciesωk = 10−4, . . . , 106 in logarithmic scale, as
described in [6].

With tol = 10−4, the reduced order is determined asr = 4 and the approximate error
bound is computed to beδ = 4.3 × 10−5. Note that using̃Y andZ̃ in Algorithm 2 reduces
the computable part of the original BT error bound (2.3) to

δ = 2

nτ (X )
∑

j=r+1

|λ̃j |,

since only the largestnτ (X ) eigenvalues of the cross-GramiañY Z̃ are computed by the
low-rank product QR algorithm. Thus,δ may under-estimate the error (2.3) if nτ (X ) < n.
In practise, the estimate usually gives an accurate error measure. The frequency response
errors for theH-matrix based BT and CG method are shown in the upper plot of Figure3.1.
We observe that both curves as well as the computed error bounds δ nearly coincide. We
also depict the errors between the original (withoutH-matrix approximation) and the CG
reduced-order system‖G− Ĝ‖∞ in the lower plot of Figure3.1to demonstrate the reliability
of our approach. Note that there is no visible difference between the corresponding error plots
and that all curves satisfy the approximate error boundδ. Thus, other error sources using the
H-matrix format in the CG approach seem to be negligible.

Next we varya(·) over the domain:

a(ξ) =











10, ξ ∈ [−1, 1]× [− 1
3 , 1

3 ],

10−4, ξ ∈ [− 1
3 , 1

3 ]×
(

[−1,− 1
3 ) ∪ ( 1

3 , 1]
)

,

1, otherwise.



ETNA
Kent State University 

http://etna.math.kent.edu

CROSS-GRAMIAN BASED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS 265

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

2d heat equation, n = 16,384, ε = τ = 1.e−6, tol = 1.e−4 → r = 4

Frequency ω 

Fr
eq

ue
nc

y 
re

sp
on

se
 e

rr
or

s

 

 

BT: |GH(jω) − Ĝ(jω)|
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FIGURE 3.1. Frequency response errors for the two-dimensional heat equation using the cross-Gramian ap-
proach as described in Algorithm2.

By the given tolerance of10−4, the reduced order is determined byr = 3. The frequency
response errors for BT and CG reduced-order models are not distinguishable in the upper plot
of Figure3.2. We observe a good approximation of the reduced systems particularly for larger
frequencies. The differences between‖G − GH‖∞ and‖GH − Ĝ‖∞ for the CG approach
are again negligible, see the lower plot in Figure3.2. This means that using approximate
Gramians does not contribute much to the errors between the original and the reduced-order
system. The results fulfill the approximate error bound ofδ = 8.7× 10−5.

Now we include convection by settingc = (0, 1)T , which leads to a nonsymmetric
stiffness matrixÃ in (3.4). To make the convective term dominant, the diffusion coefficient
is reduced toa(·) ≡ 10−4 over the whole domainΩ. In this example the eigenvalues ofA are
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FIGURE 3.2. Frequency response errors for the two-dimensional heat equation with varying diffusion using
the cross-Gramian approach as described in Algorithm2.

close to the imaginary axis, i.e.,min
i=1,...,n

|Re(λi(A))| ≈ 2 × 10−3, so that the sign function

iteration suffers from numerical problems when using an approximate arithmetic with error
tolerance greater than4 × 10−6; see the discussion in [11, Remark 1.3.5]. For this example
it is advised to setǫ = 10−8 to avoid error amplification introduced, amongst others, bythe
reciprocal of the square of the real part of the critical eigenvalueλ1 (compare with the bound
for the symmetric case (3.2)); for details see [6]. The reduced order for the tolerance10−4

is determined to ber = 9. The error in the CG reduced-order model satisfies the computed
error estimateδ = 3.3 × 10−5, and is nearly the same as for the BT reduced-order system;
see Figure3.3. Furthermore, the CG error curves for‖G − Ĝ‖∞ and‖GH − Ĝ‖∞ are very
close.
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FIGURE 3.3. Frequency response errors for the convection-diffusion equation using the cross-Gramian ap-
proach as described in Algorithm2.

Next we apply Algorithm2 to a symmetric MIMO system as obtained by the spatial
discretization of (3.3) with a(·) ≡ 1.0, c = (0, 0)T , using againn = 16, 384 grid points.
The dimension of the input space is enlarged tom = 8, additionally settingC = BT . The
reduced order determined by the CG approach for tol= 10−4 is r = 11. In Figure3.4 the
error plots for several of the 64 input/output channels of the system are depicted. All graphs
satisfy the computed error estimateδ = 8.1× 10−5.

In the last example we reduce the dimension of a non-symmetric system resulting from
the finite element semi-discretization of a two-dimensional heat equation similar to (3.4). The
number of grid points isn = 5177 and Neumann boundary conditions describing different
inputs are applied at6 parts of the boundary, thusm = 6. The output matrixC is defined
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to minimize the temperature difference between certain grid points withp = 6. BT and the
CG approach are applied to reduce the dimension of the systems using a tolerance threshold
of 10−4. The results for two input/output channels are shown in Figure 3.5. It is observed
that the CG reduced-order system is of smaller dimensionr = 14 than the system computed
by BT (r = 18). The corresponding error curves are quite close (in the lower plot, the CG
error is even smaller) and the CG reduced-order system satisfies the error estimate, though no
theoretical background exists for the CG approach applied to non-symmetric MIMO systems.
This example shows that there exist situations where the CG approach is preferable to BT,
although this is not supported by theory so far.

10
0

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

Input 1 to Output 1

Frequency ω 

F
re

qu
en

cy
 r

es
po

ns
e 

er
ro

rs

10
0

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

Input 1 to Output 2

Frequency ω 

F
re

qu
en

cy
 r

es
po

ns
e 

er
ro

rs

10
0

10
5

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Input 2 to Output 1

Frequency ω 

F
re

qu
en

cy
 r

es
po

ns
e 

er
ro

rs

10
0

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

Input 2 to Output 2

Frequency ω 

F
re

qu
en

cy
 r

es
po

ns
e 

er
ro

rs

FIGURE 3.4. Frequency response errors for the two-dimensional heat equation withm = p = 8, using the
cross-Gramian approach as described in Algorithm2.

4. Conclusions. We have shown that a balancing-related cross-Gramian approach can
be used for MOR of large-scale linear systems resulting from(semi-) discretizations of para-
bolic control systems. For SISO and for symmetric MIMO systems, the computed reduced-
order models have the same desirable properties as obtainedby the usual BT method. Fur-
thermore, it is shown that the method can be applied to general systems, provided thatm = p.
Employing formatted arithmetic in a sign function-based Sylvester solver, approximate low-
rank factors of the cross-Gramian can be computed with linear-polylogarithmic complexity.
From these low-rank factors, the projection matrices for MOR are derived directly, using
a low-rank product QR algorithm. The approximation qualityof the reduced-order system
depends on the parameterǫ for the blockwise accuracy in theH-matrix arithmetic. This is
confirmed by several numerical experiments which demonstrate the usefulness of the CG
approach.
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BT: ‖GH(jω)− Ĝ(jω)‖∞ r = 18
CG: ‖GH(jω)− Ĝ(jω)‖∞ r = 14
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FIGURE 3.5. Frequency response errors for the two-dimensional heat equation with m = p = 6, non-
symmetric, using the cross-Gramian approach as described in Algorithm2.
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