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APPROXIMATION OF THE SCATTERING AMPLITUDE
AND LINEAR SYSTEMS ∗

GENE H. GOLUB†, MARTIN STOLL‡, AND ANDY WATHEN‡

Abstract. The simultaneous solution ofAx = b andAT y = g, whereA is a non-singular matrix, is required
in a number of situations. Darmofal and Lu have proposed a methodbased on the Quasi-Minimal Residual algo-
rithm (QMR). We will introduce a technique for the same purpose based on the LSQR method and show how its
performance can be improved when using the generalized LSQR method. We further show how preconditioners can
be introduced to enhance the speed of convergence and discuss different preconditioners that can be used. The scat-
tering amplitudegT x, a widely used quantity in signal processing for example, hasa close connection to the above
problem sincex represents the solution of the forward problem andg is the right-hand side of the adjoint system.
We show how this quantity can be efficiently approximated using Gauss quadrature and introduce a block-Lanczos
process that approximates the scattering amplitude, and which can also be used with preconditioning.
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1. Introduction. Many applications require the solution of a linear system

Ax = b,

with A ∈ R
n×n; see [8]. This can be done using different solvers, depending on theprop-

erties of the underlying matrix. A direct method based on theLU factorization is typically
the method of choice for small problems. With increasing matrix dimensions, the need for
iterative methods arises; see [25, 39] for more details. The most popular of these methods are
the so-called Krylov subspace solvers, which use the space

Kk(A, r0) = span(r0, Ar0, A
2r0, . . . , A

k−1r0)

to find an appropriate approximation to the solution of the linear system. In the case of a sym-
metric matrix we would useCG [26] or MINRES [32], which also guarantee some optimality
conditions for the current iterate in the existing Krylov subspace. For a nonsymmetric ma-
trix A it is much harder to choose the best-suited method.GMRES is the most stable Krylov
subspace solver for this problem, but has the drawback of being very expensive, due to large
storage requirements and the fact that the amount of work periteration step is increasing.
There are alternative short-term recurrence approaches, such asBICG [9], BICGSTAB [46],
QMR [11], . . . , mostly based on the nonsymmetric Lanczos process. These methods are less
reliable than the ones used for symmetric systems, but can nevertheless give very good results.

In many cases we are not only interested in the solution of theforward linear system

Ax = b, (1.1)

but also of the adjoint system

AT y = g (1.2)
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simultaneously. In [14] Giles and S̈uli provide an overview of the latest developments regard-
ing adjoint methods with an excellent list of references. The applications given in [14] are
widespread: optimal control and design optimization in thecontext of fluid dynamics, aero-
nautical applications, weather prediction and data assimilation, and many more. They also
mention a more theoretical use of adjoint equations, regarding a posteriori error estimation
for partial differential equations.

In signal processing, the scattering amplitudegT x connects the adjoint right-hand side
and the forward solution. For a given vectorg this means thatAx = b determines the fieldx
from the signalb. This signal is then received on an antenna characterised bythe vectorg
which is the right-hand side of the adjoint systemAT y = g, and can be expressed asgT x.
This is of use when one is interested in what is reflected when aradar wave is impinging
on a certain object; one typical application is the design ofstealth planes. The scattering
amplitude also arises in nuclear physics [2], quantum mechanics [28] and CFD [13].

The scattering amplitude is also known in the context of optimization as the primal linear
output of a functional

Jpr(x) = gT x, (1.3)

wherex is the solution of (1.1). The equivalent formulation of the dual problem results inthe
output

Jdu(y) = yT b, (1.4)

with y being the solution of the adjoint equation (1.2). In some applications the solution to
the linear systems (1.1) and (1.2) is not required explicitly, but a good approximation to the
primal and dual output is important. In [29] Darmofal and Lu introduce a QMR technique
that simultaneously approximates the solutions to the forward and the adjoint system, and
also gives good estimates for the values of the primal and dual functional output described
in (1.3) and (1.4).

In the first part of this paper we describe theQMR algorithm followed by alternative
approaches to compute the solutions to the linear systems (1.1) and (1.2) simultaneously,
based on theLSQR and GLSQR methods. We further introduce preconditioning for these
methods and discuss different preconditioners.

In the second part of the paper we discuss how to approximate the scattering amplitude
without computing a solution to the linear system. The principal reason for this approach,
rather than computingxk and then the inner product ofg with xk, relates to numerical sta-
bility: the analysis in Section 10 of [43] for Hermitian systems, and the related explanation
in [45] for non-Hermitian systems, shows that approach to be sensitive in finite precision
arithmetic, whereas our approach based on Gauss quadratureis more reliable. We briefly
discuss a technique recently proposed by Strakoš and Tich́y in [45] and methods based on
BICG (cf. [9]) introduced by Smolarski and Saylor [41, 42], who indicate that there may be
additional benefits in using Gauss quadrature for the calculation of the scattering amplitude in
the context of high performance computing. Another paper concerned with the computation
of the scattering amplitude is [21].

We conclude the paper by showing numerical experiments for the solution of the linear
systems as well as for the approximation of the scattering amplitude by Gauss quadrature.
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2. Solving the linear systems.

2.1. The QMR approach. In [29], Lu and Darmofal presented a technique using the
standardQMR method to obtain an algorithm that would approximate the solution of the
forward and the adjoint problem at the same time. The basis ofQMR is the nonsymmetric
Lanczos process (see [11, 47])

AVk = Vk+1Tk+1,k,

AT Wk = Wk+1T̂k+1,k.

The nonsymmetric Lanczos algorithm generates two sequences Vk and Wk which are
biorthogonal, i.e.,V T

k Wk = I. The matricesTk+1,k andT̂k+1,k are of tridiagonal structure
where the blocksTk,k andT̂k,k are not necessarily symmetric. With the choicev1 = r0/ ‖r0‖,
wherer0 = b − Ax0 andxk = x0 + Vkck, we can express the residual as

‖rk‖ = ‖b − Ax0 − AVkck‖ = ‖r0 − Vk+1Tk+1,kck‖ = ‖Vk+1(‖r0‖ e1 − Tk+1,kck)‖ .

This gives rise to thequasi-residualrQ
k = ‖r0‖ e1 − Tk+1,kck, and we know that

‖rk‖ ≤ ‖Vk+1‖ ‖r
Q
k ‖;

see [11, 25] for more details. The idea presented by Lu and Darmofal was to choose
w1 = s0/ ‖s0‖, wheres0 = g − AT y0 andyk = y0 + Wkdk, to obtain the adjoint quasi-
residual

‖sQ
k ‖ =

∥∥‖s0‖ e1 − T̂k+1,kdk

∥∥

in a similar fashion to the forward quasi-residual. The two least-squares solutionsck, dk ∈ R
k

can be obtained via an updated QR factorization; see [32, 11] for details. It is also theoreti-
cally possible to introduce weights to improve the convergence behaviour; see [11].

2.2. The bidiagonalization orLSQR approach. Solving

Ax = b, AT y = g

simultaneously can be reformulated as solving

[
0 A

AT 0

] [
y
x

]
=

[
b
g

]
. (2.1)

The coefficient matrix of system (2.1)

[
0 A

AT 0

]
(2.2)

is symmetric and indefinite. Furthermore, it is heavily usedwhen computing singular values
of the matrixA and is also very important in the context of linear least squares problems. The
main tool used for either purpose is the Golub-Kahan bidiagonalization (cf. [15]), which is
also the basis for the well-knownLSQR method introduced by Paige and Saunders in [34].

In more detail, we assume that the bidiagonal factorization

A = UBV T (2.3)
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is given, whereU andV are orthogonal andB is bidiagonal. Hence, we can express forward
and adjoint systems as

UBV T x = b and V BT UT y = g.

So far we have assumed that an explicit bidiagonal factorization (2.3) is given, which
is a rather unrealistic assumption for large sparse matrices. In practice we need an iterative
procedure that represents instances of the bidiagonalization process; cf. [15, 23, 34]. To
achieve this, we use the following matrix structures

AVk = Uk+1Bk,
AT Uk+1 = VkBT

k + αk+1vk+1e
T
k+1,

(2.4)

whereVk = [v1, . . . , vk] andUk = [u1, . . . , uk] are orthogonal matrices and

Bk =





α1

β2 α2

β3
. . .
. . . αk

βk+1




.

The Golub-Kahan bidiagonalization is nothing else than theLanczos process applied to the
matrix AT A, i.e., we multiply the first equation of (2.4) by AT on the left, and then use the
second to get the Lanczos relation forAT A,

AT AVk = AT Uk+1Bk =
(
VkBT

k + αk+1vk+1e
T
k+1

)
Bk = VkBT

k Bk + α̂k+1vk+1e
T
k+1,

with α̂k+1 = αk+1βk+1; see [4, 27] for details. The initial vectors of both sequences are
linked by the relationship

AT u1 = α1v1. (2.5)

We now use the iterative process described in (2.4) to obtain approximations to the solutions
of the forward and the adjoint problem. The residuals at stepk can be defined as

rk = b − Axk (2.6)

and

sk = g − AT yk, (2.7)

with

xk = x0 + Vkzk and yk = y0 + Uk+1wk.

A typical choice foru1 would be the normalized initial residualu1 = r0/ ‖r0‖. Hence, we
get for the residual norms that

‖rk‖ = ‖b − Axk‖ = ‖b − A(x0 + Vkzk)‖ = ‖r0 − AVkzk‖

= ‖r0 − Uk+1Bkzk‖ = ‖‖r0‖ e1 − Bkzk‖ ,
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FIGURE 2.1. Solving a linear system of dimension100 × 100 with theLSQRapproach.

using (2.4) and the orthogonality ofUk+1. The adjoint residual can now be expressed as

‖sk‖ =
∥∥g − AT yk

∥∥ =
∥∥g − AT (y0 + Uk+1wk)

∥∥

=
∥∥g − AT y0 − AT Uk+1wk

∥∥

=
∥∥s0 − VkBT

k wk − αk+1vk+1e
T
k+1wk

∥∥ . (2.8)

Notice that (2.8) cannot be simplified to the desired structure
∥∥‖s0‖ e1 − BT

k wk

∥∥, since the
initial adjoint residuals0 is not in the span of the current and all the followingvj vectors.
This represents the classical approachLSQR [33, 34], where the focus is on obtaining an
approximation that minimizes‖rk‖ = ‖b − Axk‖. The method is very successful and widely
used in practice, but is limited due to the restriction givenby (2.5) in the case of simultaneous
iteration for the adjoint problem. In more detail, we are notable to choose the second starting
vector independently, and therefore cannot obtain the desired least squares structure obtained
for the forward residual. Figure2.1 illustrates the behaviour observed for all our examples
with theLSQRmethod. Here, we are working with a random matrix of dimension 100× 100.
Convergence for the forward solution could be observed whena large number of iteration
steps was executed, whereas the convergence for the adjointresidual could not be achieved at
any point, which is illustrated by the stagnation of the adjoint solution. As already mentioned,
this is due to the coupling of the starting vectors. In the next section we present a new
approach that overcomes this drawback.

2.3. GeneralizedLSQR (GLSQR). The simultaneous computation of forward and ad-
joint solutions based on the classicalLSQR method is not very successful, since the starting
vectorsu1 andv1 depend on each other through (2.5). In [40] Saunders et al. introduced
a more generalLSQR method which was also recently analyzed by Reichel and Ye [37].
Saunders and coauthors also mention in their paper that the method presented can be used to
solve forward and adjoint problem at the same time. We will discuss this here in more detail
and will also present a further analysis of the method described in [37, 40]. The method of
interest makes it possible to choose the starting vectorsu1 andv1 independently, namely,
u1 = r0/ ‖r0‖ andv1 = s0/ ‖s0‖. The algorithm stated in [37, 40] is based on the following
factorization

AVk = Uk+1Tk+1,k = UkTk,k + βk+1uk+1e
T
k ,

AT Uk = Vk+1Sk+1,k = VkSk,k + ηk+1vk+1e
T
k ,

(2.9)
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where

Vk = [v1, . . . , vk] and Uk = [u1, . . . , uk]

are orthogonal matrices and

Tk+1,k =





α1 γ1

β2 α2
. . .

.. .
. . . γk−1

βk αk

βk+1




, Sk+1,k =





δ1 θ1

η2 δ2
. . .

. . .
. . . θk−1

ηk δk

ηk+1




.

In the case of nobreakdown1, the following relation holds

ST
k,k = Tk,k.

The matrix factorization given in (2.9) can be used to produce simple algorithmic state-
ments of how to obtain new iterates foruj andvj :

βk+1uk+1 = Avk − αkuk − γk−1uk−1,
ηk+1vk+1 = AT uk − δkvk − θk−1vk−1.

(2.10)

The parametersαj , γj , δj , θj can be determined via the Gram-Schmidt orthogonalization pro-
cess in the classical or the modified version. Furthermore,βj andηj are determined from the
normalization of the vectors in (2.10).

Since it is well understood that the classical Golub-Kahan bidiagonalization process in-
troduced in [15] can be viewed as the Lanczos algorithm applied to the matrixAT A, we want
to analyze whether a similar connection can be made for theGLSQRmethod given in [37, 40].
Note that if the Lanczos process is applied to the matrix (2.2) with starting vector[u1, 0]

T ,
we get equivalence to the Golub-Kahan bidiagonalization; see [4, 27] for details.

The generalizedLSQR method (GLSQR) given in [37, 40] looks very similar to the Lanc-
zos process applied to the matrix (2.2) and we will now show that in generalGLSQRcan not
be seen as a Lanczos process applied to this matrix. The Lanczos iteration then gives

νk+1

[
uk+1

vk+1

]
=

[
0 A

AT 0

] [
uk

vk

]
− ξk

[
uk

vk

]
− ̺k−1

[
uk−1

vk−1

]
, (2.11)

and the resulting recursions are

νk+1uk+1 = Avk − ξkuk − ̺k−1uk−1,
νk+1vk+1 = AT uk − ξkvk − ̺k−1vk−1.

The parameters̺k−1, ξk andνk+1 are related to the parameters from theGLSQRprocess via

ξk = uT
k Avk + vT

k AT uk = αk + δk,

̺k−1 = uT
k−1Avk + vT

k−1A
T uk = γk−1 + ηk−1,

and since the Lanczos process generates a symmetric tridiagonal matrix, we also get

νk+1 = ̺k = γk + ηk.

1We discuss breakdowns later in this section.
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The orthogonality condition imposed by the symmetric Lanczos process ensures that

[
uT

k+1 vT
k+1

] [
uk

vk

]
= 0,

which reduces touT
k+1uk + vT

k+1vk = 0. This criteria would be fulfilled by the vectors
coming from theGLSQRmethod, because it creates two sequences of orthonormal vectors. In
general, the vectors coming from the symmetric Lanczos process do not satisfyuT

k+1uk = 0

andvT
k+1vk = 0.

In the following, we study the similarity ofGLSQRand a special block-Lanczos method.
In [40] a connection to a block-Lanczos for the matrixAT A was made. Here we will discuss
a method based on the augmented matrix (2.2).

Hence, we assume the complete matrix decompositions

AV = UT and AT U = V TT ,

with S = TT . Using this relations, we can rewrite the linear system (2.1) as
[

U 0
0 V

] [
0 T

TT 0

] [
UT 0
0 V T

] [
y
x

]
=

[
b
g

]
. (2.12)

We now introduce the perfect shuffle permutation

Π = [e1, e3, . . . , e2, e4, . . .] (2.13)

and useΠ to modify (2.12), obtaining
[

U 0
0 V

]
ΠT Π

[
0 T

TT 0

]
ΠT Π

[
UT 0
0 V T

] [
y
x

]
=

[
b
g

]
. (2.14)

We now further analyze the matrices given in (2.14). The first two matrices can also be written
as

U =





| | | | | |

u1 u2

... 0 0 0
| | | | | |
| | | | | |

0 0 0 v1 v2

...
| | | | | |





ΠT =





| | | | | |

u1 0 u2 0
...

...
| | | | | |
| | | | | |

0 v1 0 v2

...
...

| | | | | |





.

Next, we study the similarity transformation on
[

0 T
TT 0

]

usingΠ, which results in

T = Π

[
0 T

TT 0

]
ΠT =





Θ1 ΨT
1

Ψ1 Θ2 ΨT
2

Ψ2
. . .

. ..
. . .

. ..




, (2.15)



ETNA
Kent State University 

http://etna.math.kent.edu

APPROXIMATING THE SCATTERING AMPLITUDE 185

with

Θi =

[
0 αi

αi 0

]
and Ψi =

[
0 βi+1

γi 0

]
.

Using the properties of theLSQR method by Reichel and Ye [37], we see that the matrixU is
an orthogonal matrix and furthermore that if we writeU = [U1,U2, · · · ], where

Ui =





| |
ui 0
| |
| |
0 vi

| |




,

thenUT
i Ui = I for all i. Thus, one particular instance at stepk of the reformulated method

reduces to

Uk+1Ψk+1 =

[
0 A

AT 0

]
Uk − UkΘk − Uk−1Ψ

T
k−1.

Hence, we have shown that theGLSQR method can be viewed as a special block-Lanczos
method with stepsize2; see [22, 23, 30] for more details on the block-Lanczos method.

2.4. GLSQR and linear systems.The GLSQR process analyzed above can be used to
obtain approximate solutions to the linear system and the adjoint system. We are now able to
setu1 andv1 independently and choose, for initial guessesx0, y0 and residualsr0 = b−Ax0,
s0 = g − AT y0,

u1 =
r0

‖r0‖
and v1 =

s0

‖s0‖
.

Hence, our approximations for the solution at each step are given by

xk = x0 + Vkzk (2.16)

for the forward problem and

yk = y0 + Ukwk (2.17)

for the linear system involving the adjoint. Using this and (2.9) we can express the residual
at stepk as follows: for the forward problem

‖rk‖ = ‖b − Axk‖ = ‖b − A(x0 + Vkzk)‖ = ‖r0 − AVkzk‖

= ‖r0 − Uk+1Tk+1,kzk‖ =
∥∥UT

k+1r0 − Tk+1,kzk

∥∥

=
∥∥‖r0‖ e1 − Tk+1,kzk

∥∥ (2.18)

and, in complete analogy,

‖sk‖ =
∥∥g − AT yk

∥∥ =
∥∥V T

k+1s0 − Sk+1,kwk

∥∥

=
∥∥‖s0‖ e1 − Sk+1,kwk

∥∥. (2.19)

The solutionszk andwk can be obtained by solving the least squares systems (2.18) and (2.19),
respectively. The QR factorization is a well known tool to solve least squares systems of the
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above form. We therefore have to compute the QR factorization of Tk+1,k andSk+1,k. The
factorization can be updated at each step using just one Givens rotation. In more detail, we
assume that the QR factorization ofTk,k−1 = Qk−1Rk−1 is given, with

Rk−1 =

[
R̂k−1

0

]

andR̂k−1 an upper triangular matrix. To obtain the QR factorization of Tk+1,k we eliminate
the elementβk+1 from

[
QT

k−1 0
0 1

]
Tk+1,k =

[
QT

k−1 0
0 1

] [
Tk,k−1 αkek + γk−1ek−1

0 βk+1

]

=

[
Rk−1 QT

k−1(αkek + γk−1ek−1)
0 βk+1

] (2.20)

by using one Givens rotation. The same argument holds for theQR decomposition of the
matrix Sk+1,k. Thus, we have to compute two Givens rotations at every step to solve the
systems (2.18) and (2.19) efficiently. There is no need to store the whole basisVk or Uk in
order to update the solution as described in (2.16) and (2.17); see also [25]. The matrixRk

of the QR decomposition of the tridiagonal matrixTk+1,k has only three non-zero diagonals.
Let us defineCk = [c0, c1, . . . , ck−1] = VkR̂−1

k . Note thatc0 is a multiple ofv1 and we can
compute successive columns usingCkR̂k = Vk, i.e.,

ck−1 = (vk − r̂k−1,kck−2 − r̂k−2,kck−3)/r̂k,k, (2.21)

where thêri,j are elements of̂Rk. Therefore, we can update the solution

xk = x0 + ‖r0‖Ck

(
QT

k e1

)
k×1

= xk−1 + ak−1ck−1, (2.22)

whereak−1 is thekth entry of‖r0‖QT
k e1.

The storage requirements for theGLSQRmethod are similar to the storage requirements
for a method based on the non-symmetric Lanczos process, as proposed by Lu and Darmo-
fal [29]. We need to store the vectorsuj , vj , uj−1, andvj−1, to generate the basis vectors for
the next Krylov space. Furthermore, we need to store the sparse matricesTk+1,k andSk+1,k.
This can be done in a parameterized fashion (remember that they are tridiagonal matrices) and
sinceTk,k = ST

k,k, until the first breakdown occurs, the storage requirement can be reduced
even further. The triangular factors ofTk+1,k andSk+1,k can also be stored very efficiently,
since they only have three nonzero diagonals. According to (2.21) the solutionsxk andyk

can be updated storing only two vectorsck−2 andck−3 for the forward problem, and another
two vectors for the adjoint solution. Thus the solutions canbe obtained by storing only a
minimal amount of data in addition to the original problem.

In [37], Reichel and Ye solve the forward problem and introduce thetermbreakdownin
the case that the matrixSk+1,k associated with the adjoint problem has a zero entry on the
subdiagonal. Note that until a breakdown occurs it is not necessary to distinguish between
the parameters of the forward and adjoint sequence, sinceTk,k = ST

k,k. We will discuss these
breakdowns and show that they are indeedlucky breakdowns, which means that the solution
can be found in the current space. When the breakdown occurs, we assume that the parameter
βk+1 = 0 whereasηk+1 6= 0, in which case Reichel and Ye proved in [29, Theorem 2.2] that
the solutionxk for the forward problem can be obtained viaxk = x0 + ‖r0‖VkT−1

k,ke1. The
same holds ifβk+1 6= 0 whereasηk+1 = 0, in which case the solutionyk can be obtained



ETNA
Kent State University 

http://etna.math.kent.edu

APPROXIMATING THE SCATTERING AMPLITUDE 187

via yk = y0 + ‖s0‖UkS−1
k,ke1. In the case whenβk+1 = 0 andηk+1 = 0 at the same time,

both problems are solved and we can stop the algorithm. Note that this is in contrast to the
breakdowns that can occur in the non-symmetric Lanczos process.

In both cases, we have to continue the algorithm since only the solution to one of the two
problems is found. Without loss of generality, we assume that βk+1 = 0 whereasηk+1 6= 0,
which means that the forward problem has already been solved. Considering that now we
have

βk+1uk+1 = 0 = Avk − αkuk − γk−1uk−1,

we can use

αk+1uk+1 = Avk+1 − γkuk

to computeuk+1, a strategy implicitly proposed by Reichel and Ye in [37].
From the point where the breakdown occurs, the band structure of the matrixTk+1,k

would not be tridiagonal anymore, but rather upper bidiagonal since we are computing the
vectoruk+1 based onαk+1uk+1 = Avk+1 − γkuk. There is no need to update the solution
xk in further steps of the method. The vectorsuk+1 generated by this two-term recurrence
are used to update the solution for the adjoint problem in a way we will now describe. First,
we obtain a new basis vectorvj+1

ηj+1vj+1 = AT uj − δjvj − θj−1vj−1

and then update the QR factorization ofSk+1,k to get a new iterateyk. If the parameter
ηj+1 = 0, the solution for the adjoint problem is found and the methodcan be terminated.
In the case of the parameterαk+1 becoming zero, the solution for the adjoint problem can
be obtained using the following theorem, which stands in complete analogy to Theorem 2.3
in [37].

THEOREM 2.1. We assume thatGLSQR does not break down until stepm of the algo-
rithm. At stepm we getβm+1 = 0 andηm+1 6= 0, which corresponds to the forward problem
being solved. The process is continued fork ≥ m with the updates

αk+1uk+1 = Avk+1 − γkuk

and

ηk+1vk+1 = AT uk − δkvk − θk−1vk−1.

If the breakdown occurs at stepk, the solution of the adjoint problem can now be obtained
from one of the following two cases:

1. if the parameterηk+1 = 0, then the adjoint solution is given by

yk = y0 + ‖s0‖UkS−1
k,ke1;

2. if the parameterαk+1 = 0, then the adjoint problem can be recovered using

yk = y0 + Ukwk.

Proof. The proof of the first point is trivial since, forηk+1 = 0, the least squares error in

min
w∈Rk

∥∥‖r0‖ e1 − Sk+1,kwk

∥∥
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is equal to zero. For the second point, we note that the solution wk to the least squares
problem

min
w∈Rk

∥∥‖r0‖ e1 − Sk+1,kwk

∥∥

satisfies the following relation

ST
k+1,k (‖s0‖ e1 − Sk+1,kwk) = 0.

The breakdown withαk+1 = 0 results in

αk+1uk+1 = 0 = Avk+1 − γkuk,

which means that no newuk+1 is generated in this step. In matrix terms we get

AVk+1 = UkTk,k+1,

AT Uk = Vk+1Sk+1,k.

This results in,

A(g − AT y) = A(s0 − AT Ukwk) = A(s0 − Vk+1Sk+1,kwk)

= As0 − AVk+1Sk+1,kwk = ‖s0‖AVk+1e1 − AVk+1Sk+1,kwk

= ‖s0‖UkTk,k+1e1 − UkTk,k+1Sk+1,kwk

= UkTk,k+1 (‖s0‖ e1 − Sk+1,kwk)

= UkST
k+1,k (‖s0‖ e1 − Sk+1,kwk) = 0,

using the fact thatST
k+1,k = Tk,k+1; see Theorem 2.1 in [37]. Due to the assumption thatA

is nonsingular the solution for the adjoint problem is givenby yk = y0 + Ukwk.
This theorem shows that theGLSQRmethod is a well-suited process to find the solution

of the forward and adjoint problems at the same time. The breakdowns that may occur in
the algorithm are all benign, which underlines the difference to methods based on the non-
symmetric Lanczos process. In order to give better reliability of the method based on the
nonsymmetric Lanczos process, look-ahead strategies haveto be implemented; cf. [10, 36].

2.5. PreconditionedGLSQR. In practice theGLSQR method can show slow conver-
gence, and therefore has to be enhanced using preconditioning techniques. We assume the
preconditionerM = M1M2 is given. Note that in generalM1 6= M2. The preconditioned
matrix is now

Â = M−1
1 AM−1

2 ,

and its transpose is given by

ÂT = M−T
2 AT M−T

1 .

Since we do not want to compute the matrixÂ, we have to rewrite theGLSQRmethod

βj+1uj+1 = M−1
1 AM−1

2 vj − αjuj − γj−1uj−1,

ηj+1vj+1 = M−T
2 AT M−T

1 uj − δjvj − θj−1vj−1,
(2.23)

to obtain an efficient implementation of the preconditionedprocedure, i.e.,

βj+1M1uj+1 = AM−1
2 vj − αjM1uj − γj−1M1uj−1,

ηj+1M
T
2 vj+1 = AT M−T

1 uj − δjM
T
2 vj − θj−1M

T
2 vj−1.

(2.24)
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If we setpj = M1uj , M2q̂j = vj , qj = MT
2 vj , andMT

1 p̂j = uj , we get

βj+1pj+1 = Aq̂j − αjpj − γj−1pj−1,

ηj+1qj+1 = AT p̂j − δjqj − θj−1qj−1,
(2.25)

with the following updates

q̂j = M−1
2 vj = M−1

2 M−T
2 qj , (2.26)

p̂j = M−T
1 uj = M−T

1 M−1
1 pj . (2.27)

We also want to compute the parametersαj , γj−1, δj , andθj−1, which can be expressed in
terms of the vectorŝpj , q̂j , pj , andqj . Namely, we get

αj = (Âvj , uj) = (Aq̂j , p̂j),

γj−1 = (Âvj , uj−1) = (Aq̂j , p̂j−1),

δj = (ÂT uj , vj) = (AT p̂j , q̂j),

θj−1 = (ÂT uj , vj−1) = (AT p̂j , q̂j−1),

which can be computed cheaply. Note, that we need to evaluateAT p̂j and Aq̂j once in
every iteration step. The parametersβj+1 andηj+1 can be computed using equations (2.26)
and (2.27); see Algorithm1 for a summary of this method.

ALGORITHM 1 (PreconditionedGLSQR).

for k = 0, 1, . . . do
Solve(MT

2 M2)q̂j = qj

Solve(M1M
T
1 )p̂j = pj

ComputeAq̂j .
Computeαj = (Aq̂j , p̂j) andγj−1 = (Aq̂j , p̂j−1).
Computeβj+1 andpj+1 via βj+1pj+1 = Aq̂j − αjpj − γj−1pj−1

ComputeAT p̂j

Computeδj = (AT p̂j , q̂j) andθj−1 = (AT p̂j , q̂j−1).
Computeηj+1 andqj+1 via ηj+1qj+1 = AT p̂j − δjqj − θj−1qj−1

end for

This enables us to compute the matricesTk+1,k andSk+1,k efficiently. Hence, we can
update the QR factorizations in every step using one Givens rotation for the forward problem
and one for the adjoint problem. The solutionsxk andyk can then be updated without storing
the whole Krylov space, but with a recursion similar to (2.22). The norm of the precondi-
tioned residual can be computed via the well known recursion

‖rk‖ = |sin(θk)| ‖rk−1‖ ,

wheresin(θk) is associated with the Givens rotation at stepk. There are different precon-
ditioning strategies for enhancing the spectral properties of A to make theGLSQR method
converge faster. One possibility would be to use an incomplete LU factorization ofA and
then setM1 = L andM2 = U ; see [39] for more details.

Another technique is to use the fact that theGLSQR method is also a block-Lanczos
method for the normal equations, i.e., the system matrix that has to be preconditioned is now
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AT A. We therefore consider preconditioning techniques that are well-suited for the normal
equations.

One possibility would be to compute an incomplete Cholesky factorization ofAT A, but,
since the matrixAT A is typically less sparse thanA and we never want to form the matrix
AT A explicitly, we consider preconditioners coming from an LQ decomposition ofA. In [39]
incomplete LQ preconditioners are discussed and used as a preconditioner to solve the system
with AAT . This strategy can be adopted when trying to find a solution toa system withAT A.

Another approach is based on incomplete orthogonal factorizations, where a decompo-
sition A = QR + E, with Q orthogonal andE the error term, is computed. There are
different variants of this decomposition [3, 35] which result in a different structure of the
matrix R. In the simple case of the so-called cIGO (column-Incomplete Givens Orthogo-
nalization) method, where entries are only dropped based upon their position, we restrictR
to have the same sparsity pattern as the original matrixA. We now useQ andR from the
incomplete factorization and setM1 = Q andM2 = R, which givesÂ = QT AR−1 for the
normal equationŝAT Â = R−T AT QQT AR−1 = R−T AT AR−1. Hence, we can useR as
a preconditioner for the normal equations and therefore fortheGLSQRmethod.

3. Approximating the scattering amplitude. In Section2 we gave a detailed overview
of how to compute the solution to the forward and adjoint linear system simultaneously. In
the following, we present methods that allow the approximation of the scattering amplitude
or primal output functional directly, without computing approximate solutions to the linear
systems.

3.1. Matrices, moments and quadrature: an introduction. In [18, 19] Golub and
Meurant show how Gauss quadrature can be used to approximate

uT f(W )v,

whereW is a symmetric matrix andf is some function, not necessarily a polynomial.
This can be done using the eigendecompositionW = QΛQT , with orthogonalQ, and

we assumeλ1 ≤ λ2 ≤ · · · ≤ λn. As a result we get

uT f(W )v = uT Qf(Λ)QT v. (3.1)

By introducingα = QT u andβ = QT v, we can rewrite (3.1) as

uT f(W )v = αT f(Λ)β =

n∑

i=1

f(λi)αiβi. (3.2)

Formula (3.2) can be viewed as a Riemann-Stieltes integral

I [f ] = uT f(W )v =

∫ b

a

f(λ) dα(λ); (3.3)

see [18] for more details. We can now express (3.3) as the quadrature formula

∫ b

a

f(λ) dα(λ) =

N∑

j=1

ωjf(tj) +

M∑

k=1

vkf(zk) + R [f ] ,

where the weightsωj , vk and the nodestj are unknowns and the nodeszk are prescribed.
Expressions for the remainderR [f ] can be found in [18], and for more details we recom-
mend [5, 6, 12, 16, 17, 24]. We will see in the next section that, in the case ofu = v, we
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can compute the weights and nodes of the quadrature rule by simply applying the Lanczos
process to the symmetric matrixW ; see [24]. Then, the eigenvalues of the tridiagonal matrix
will represent the nodes of the quadrature rule, and the firstcomponent of the corresponding
eigenvector can be used to compute the weights.

3.2. The Golub-Kahan bidiagonalization. The scattering amplitude or primal output
Jpr(x) = gT x can now be approximated using the connection between Gauss quadrature
and the Lanczos process. To be able to apply the theory of Golub and Meurant, we need the
system matrix to be symmetric, which can be achieved by

Jpr(x) = gT (AT A)−1AT b = gT (AT A)−1p = gT f(AT A)p, (3.4)

using the fact thatx = A−1b andp = AT b. In order to use the Lanczos process to obtain
nodes and weights of the quadrature formula, we need a symmetrized version of (3.4)

Jpr(x) =
1

4

[
(p + g)T (AT A)−1(p + g) − (g − p)T (AT A)−1(g − p)

]
.

Good approximations to(p + g)T (AT A)−1(p + g) and(p− g)T (AT A)−1(p− g) will result
in a good approximation to the scattering amplitude. Here, we present the analysis for the
Gauss rule (i.e.,M = 0) where we apply the Lanczos process toAT A and get

AT AVN = VNTN + rNeT
N , (3.5)

with orthogonalVN and

TN =





α1 β2

β2 α2
.. .

. . .
.. . βN

βN αN




.

The eigenvalues ofTN determine the nodes of

∫ b

a

f(λ) dα(λ) =
N∑

j=1

ωjf(tj) + RG [f ] ,

whereRG[f ] for the functionf(x) = 1
x

is given by

RG[f ] =
1

η2N+1

∫ b

a

[ N∏

j=1

(λ − tj)
]2

dα(λ).

Notice that, since the matrixAT A has only positive eigenvalues, the residualRG[f ] will
always be positive, and therefore the Gauss rule will alwaysgive an underestimation of the
scattering amplitude.

The weights for the Gauss rule are given by the squares of the first elements of the nor-
malized eigenvectors ofTN . Instead of applying the Lanczos process toAT A, we can simply
use the Golub-Kahan bidiagonalization procedure presented in Section2.2. The matrixTN

can be trivially obtained from (2.4), via TN = BT
NBN . SinceTN is tridiagonal and similar

to a symmetric matrix, it is relatively cheap to compute its eigenvalues and eigenvectors.
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In [20] Golub and Meurant further show that the evaluation of the expression

N∑

j=1

ωjf(tj)

can be simplified to

N∑

j=1

ωjf(tj) = eT
1 f(TN )e1,

which reduces toeT
1 T−1

N e1 for f(x) = 1/x. The last expression simply states that we have
to find a good approximation for the(1, 1) element of the inverse ofTN . If we can find
such a good approximation for(T−1

N )(1,1), the computation becomes much more efficient,
since no eigenvalues or eigenvectors have to be computed to determine the Gauss quadrature
rule. Another possibility is to solve the systemTNz = e1, which is relatively cheap for the
tridiagonal matrixTN .

Golub and Meurant [18, 19] give bounds on the elements of the inverse using Gauss,
Gauss-Radau, Gauss-Lobatto rules, depending on the Lanczos process. These bounds can
then be used to give a good approximation to the scattering amplitude without solving a linear
system withTN or using its eigenvalues and eigenvectors. We will only givethe bounds
connected to the Gauss-Radau rule, i.e.,

t1,1 − b +
s2
1

b

t21,1 − t1,1b + s2
1

≤ (T−1
N )1,1 ≤

t1,1 − a +
s2
1

a

t21,1 − t1,1a + s2
1

,

with s2
1 =

∑
j 6=1 a2

j1, andti,j the elements ofTN . These bounds are not sharp since they will
improve with the number of Lanczos steps, and the approximation to the scattering amplitude
will improve as the algorithm progresses. It is also possible to obtain the given bounds using
variational principles; see [38]. In the case ofCG applied to a positive definite matrixA, the
(1, 1)-element ofT−1

N can be easily approximated using

(T−1
N )(1,1) =

1

‖r0‖
2

N−1∑

j=0

αj ‖rj‖
2
,

whereαj and‖rj‖ are given at everyCG step. This formula is discussed in [1, 43, 44], where
it is shown that it is numerically stable. From [43] we get that the remainderRG[f ] in the
Gauss quadrature wheref is the reciprocal function, is equal to the error at stepk of CG for
the normal equations, i.e.,

‖x − xk‖AT A / ‖r0‖ = RG[f ].

Hence, the Golub-Kahan bidiagonalization can be used to approximate the error forCG for
the normal equations [45].

3.3. Approximation using GLSQR (the block case). We now want to use a block
method to estimate the scattering amplitude usingGLSQR. The 2 × 2 matrix integral we
are interested in is now

∫ b

a

f(λ) dα(λ) =

[
bT 0
0 gT

] [
0 A−T

A−1 0

] [
b 0
0 g

]

=

[
0 bT A−T g

gT A−1b 0

]
.

(3.6)
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In [18], Golub and Meurant show how a block method can be used to generate quadrature
formulae. In more detail, the integral

∫ b

a
f(λ) dα(λ) is now a2 × 2 symmetric matrix, and

the most general quadrature formula is of the form

∫ b

a

f(λ) dα(λ) =
k∑

i=1

Cjf(Hj)Cj + R[f ], (3.7)

with Hj andCj being symmetric2 × 2 matrices. Expression (3.7) can be simplified using

Hj = QjΛjQ
T
j ,

whereQj is the eigenvector matrix andΛj the2× 2 diagonal matrix containing the eigenval-
ues. Hence,

k∑

i=1

Cjf(Hj)Cj =
k∑

i=1

CjQ
T
j f(Λj)QjCj ,

and if we writeCjQ
T
j f(Λj)QjCj as

f(λ1)z1z
T
1 + f(λ2)z2z

T
2 ,

wherezj is thej-th column of the matrixCjQ
T
j . Consequently, we obtain for the quadrature

rule
2k∑

i=1

f(λj)zjz
T
j ,

whereλj is a scalar andzj =
[
z
(1)
j , z

(2)
j

]T
∈ R

2. In [18], it is shown that there exist
orthogonal matrix polynomials such that

λpj−1(λ) = pj(λ)Bj + pj−1(λ)Dj + pj−2(λ)BT
j−1,

with p0(λ) = I2 andp−1(λ) = 0. We can write the last equation as

λ [p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pk−1(λ)] Tk + [0, . . . , 0, pN (λ)Bk]
T

,

with

Tk =





D1 BT
1

B1 D2 BT
2

. ..
.. .

. . .
Bk−2 Dk−1 BT

k−1

Bk−1 Dk




,

which is a block-tridiagonal matrix. Therefore, we can define the quadrature rule as

∫ b

a

f(λ) dα(λ) =

2k∑

i=1

f(θi)uiu
T
i + R[f ], (3.8)

where2k is the order of the matrixTk, θi the eigenvalues ofTk, andui the vector consisting
of the first two elements of the corresponding normalized eigenvector. The remainderR[f ]
can be approximated using a Lagrange polynomial and we get

R[f ] =
f (2k)(η)

(2k)!

∫ b

a

s(λ) dα(λ),



ETNA
Kent State University 

http://etna.math.kent.edu

194 G. H. GOLUB, M. STOLL AND A. WATHEN

wheres(x) = (x−θ1)(x−θ2) . . . (x−θ2N ). The sign of the functions is not constant over the
interval [a, b]. Therefore, we cannot expect that the block-Gauss rule always underestimates
the scattering amplitude. This might result in a rather oscillatory behavior. In [18], it is also
shown that

2k∑

i=1

f(θi)uiu
T
i = eT f(Tk)e,

with e = (I2, 0, . . . , 0). In order to use the approximation (3.8), we need a block-Lanczos
algorithm for the matrix

[
0 A

AT 0

]
.

TheGLSQRalgorithm represents an implementation of a block-Lanczosmethod for this ma-
trix and can therefore be used to create a block-tridiagonalmatrix Tk as introduced in Sec-
tion 2.3. Using this, we show in the second part of this section that wecan compute an
approximation to the integral given in (3.6). Hence, the scattering amplitude is approximated
via

2k∑

i=1

f(λi)uiu
T
i ≈

[
0 gT x

gT x 0

]

without computing an approximation tox directly.
Further simplification of the above can be achieved following a result in [45]: since

from (2.15)

Tk = Π2k

[
0 Tk

TT
k 0

]
ΠT

2k,

whereΠ2k is the permutation (2.13) of dimension2k, in the case of the reciprocal function
we have

eTT −1
k e = eT Π2k

[
0 T−T

k

T−1
k 0

]
ΠT

2ke

=

[
0 eT

1 T−T
k e1

eT
1 T−1

k e1 0

]
.

Note that with the settingsr0 = b − Ax0 ands0 = g − AT y0, the scattering amplitude can
be written as

gT A−1b = sT
0 A−1r0 + sT

0 x0 + yT
0 b.

With our choice ofx0 = y0 = 0, we get that the scattering amplitude is approximated by
sT
0 A−1r0. Starting theGLSQRblock-Lanczos process with

[
u1 0
0 v1

]
,

whereu1 = r0/ ‖r0‖ andv1 = s0/ ‖s0‖, results invT
1 A−1u1 = eT

1 T−1
N e1. An approxima-

tion to the scattering amplitudegT A−1b is thus obtained via

sT
0 A−1r0 = ‖r0‖ ‖s0‖ eT

1 T−1
N e1.
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3.4. PreconditionedGLSQR. The preconditionedGLSQR method was introduced in
Section2.5, and we now show that we can use this method to approximate thescattering
amplitude directly. In the above we showed thatGLSQRgives an approximation to the scat-
tering amplitude using that

∫ b

a

f(λ) dα(λ) =

[
0 x̂T g

gT x̂ 0

]
.

Reformulating this in terms of the preconditioned method gives,

ĝT x̂ = ĝT Â−1b̂ = (M−T
2 g)T (M−1

1 AM−1
2 )−1(M−1

1 b)

= gT M−1
2 M2A

−1M1M
−1
1 b = gT A−1b = gT x,

which shows that the scattering amplitude for the preconditioned system

Âx̂ = b̂,

with Â = M−1
1 AM−1

2 , x̂ = M2x andb̂ = M−1
1 b, is equivalent to the scattering amplitude

of the original system. The scattering amplitude can therefore be approximated via
[

0 gT x̂
x̂T g 0

]
.

3.5. BICG and the scattering amplitude. The methods we presented so far are based
on Lanczos methods forAT A. The algorithm introduced in this section connectsBICG (see
Algorithm 2) and [9], a method based on the nonsymmetric Lanczos process and thescatter-
ing amplitude.

ALGORITHM 2 (Biconjugate Gradient Method (BICG)).

for k = 0, 1, . . . do

αk =
sT

k rk

qT
k

Apk

xk+1 = xk + αkpk

yk+1 = yk + αkqk

rk+1 = rk − αkApk

sk+1 = sk − αkAT qk

βk+1 =
sT

k+1rk+1

sT
k

rk

pk+1 = rk+1 + βk+1pk

qk+1 = sk+1 + βk+1qk

end for

Usingrj = b − Axj andsj = g − AT yj , the scattering amplitude can be expressed as

gT A−1b =

N−1∑

j=0

αjs
T
j rj + sT

NA−1rN , (3.9)

whereN is the dimension ofA; cf. [45]. To show this, we user0 = b, s0 = g, and

sT
j A−1rj − sT

j+1A
−1rj+1 = (g − AT yj)

T A−1(b − Axj) − sT
j+1A

−1rj+1

= (g − AT yj + AT yj+1 − AT yj+1)
T A−1(b − Axj + AT xj+1 − AT xj+1)

− sT
j+1A

−1rj+1

= (sj+1 + AT (yj+1 − yj))
T A−1(rj+1 + A(xj+1 − xj)) − sT

j+1A
−1rj+1

= αj(q
T
j rj+1 + sT

j+1pj + αjq
T
j Apj) = αjs

T
j rj ,
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FIGURE 4.1. QMRandGLSQRfor a matrix of dimension100 (Example4.1).

where we useαj =
〈sj ,rj〉
〈qj ,Apj〉

. An approximation to the scattering amplitude at stepk is then
given by

gT A−1b ≈

k∑

j=0

αjs
T
j rj . (3.10)

It can be shown that (3.9) also holds for the preconditioned version ofBICG with system
matrix Â = M−1

1 AM−1
2 and preconditioned initial residualsr0 = M−1

1 b ands0 = M−T
2 g.

Another way to approximate the scattering amplitude viaBICG was given by Saylor and
Smolarski [42, 41], in which the scattering amplitude is connected to Gaussian quadrature in
the complex plane. The scattering amplitude is then given by

gT A−1b ≈

k∑

i=1

ωi

ζi

, (3.11)

whereωi and ζi are the eigenvector components and the eigenvalues, respectively, of the
tridiagonal matrix associated with the appropriate formulation of BICG; see [41] for details.
In [45] it is shown that (3.10) and (3.11) are mathematically equivalent. Note that, in a similar
way to Section3.4, it can be shown that the scattering amplitude of the preconditioned system
is equivalent to the scattering amplitude of the preconditioned version ofBICG.

4. Numerical experiments.

4.1. Solving the linear system.In this Section we want to show numerical experiments
for the methods introduced in Section2.

EXAMPLE 4.1. In the first example, we apply theQMR and theGLSQRmethods to a ran-
dom sparse matrix of dimension100; e.g.,A=sprandn(n,n,0.2)+speye(n) in Matlab
notation. The maximal iteration number for both methods is200, and it can be observed in
Figure4.1thatGLSQRoutperformsQMR for this example.

EXAMPLE 4.2. The second example is the matrixORSIRR1, from the Matrix Market2

collection, which represents a linear system used in oil reservoir modelling. The matrix size
is 1030. The results without preconditioning are shown in Figure4.2. Results using the In-
complete LU (ILU) factorization with zero fill-in as a preconditioner forGLSQRandQMR are

2http://math.nist.gov/MatrixMarket/

http://math.nist.gov/MatrixMarket/
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FIGURE 4.2. GLSQRandQMR for the matrix: ORSIRR1 (Example4.2).
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FIGURE 4.3. ILU preconditionedGLSQRandQMR for the matrix: ORSIRR1 (Example4.2).

given in Figure4.3. Clearly, QMR outperformsGLSQR in both cases. The choice of using
ILU as a preconditioner is mainly motivated by the fact that we are not aware of existing
more sophisticated implementations of incomplete orthogonal factorizations or incomplete
modified Gram-Schmidt decompositions that can be used in Matlab. Our tests with the basic
implementations of cIGO and IMGS did not yield better numerical results than the ILU pre-
conditioner, and we have therefore omitted these results inthe paper. Nevertheless, we feel
that further research in the possible use of incomplete orthogonal factorizations might result
in useful preconditioners forGLSQR.

EXAMPLE 4.3. The next example is motivated by [31], where Nachtigal et al. introduce
examples that show how different solvers for nonsymmetric systems can outperform others
by a large factor. The original example in [31] is given by the matrix

J =





0 1

0
. . .
. . . 1

1 0




.
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FIGURE 4.4. Perturbed circulant shift matrix (Example4.3).

The results, shown in Figure4.4, are for a sparse perturbation of the matrixJ , i.e., in Matlab
notation,A=1e-3*sprandn(n,n,0.2)+J. It is seen thatQMR convergence for both for-
ward and adjoint systems is slow, whereasGLSQRconvergence is essentially identical for the
forward and adjoint systems, and is rapid.

The convergence ofGLSQR has not yet been analyzed, but we feel that using the con-
nection to the block-Lanczos process forAT A we can try to look for similarities to the con-
vergence ofCG for the normal equations (CGNE). It is well known [31] that the convergence
of CGNE is governed by the singular values of the matrixA. We therefore illustrate in the
next example how the convergence ofGLSQR is influenced by the distribution of the singular
values ofA. This should not be seen as a concise description of the convergence behaviour,
but rather as a starting point for further research.

EXAMPLE 4.4. In this example we create a diagonal matrixΣ = diag(D1,D2) with

D1 =




1000

.. .
1000



 ∈ R
p,p and D2 =





1
2

. . .
q




∈ R

q,q,

with p + q = n. We then createA = UΣV T , whereU andV are orthogonal matrices. For
n = 100 the results ofGLSQR, for D1 ∈ R

90,90, D1 ∈ R
10,10, andD1 ∈ R

50,50, are given in
Figure4.5. It is seen that there is a better convergence when there are fewer distinct singular
values. Figure4.6shows the comparison ofQMR andGLSQRwithout preconditioning on an
example withn = 1000 andD1 of dimension600; clearlyGLSQRis superior in this example.

4.2. Approximating the functional. In this section we want to present results for the
methods that approximate the scattering amplitude directly, avoiding the computation of ap-
proximate solutions for the linear systems withA andAT .

EXAMPLE 4.5. In this example we compute the scattering amplitude using the precon-
ditionedGLSQRapproach for the oil reservoir exampleORSIRR1. The matrix size is1030.
We use the Incomplete LU (ILU) factorization as a preconditioner. The absolute values of
the approximation fromGLSQRare shown in the top part of Figure4.7, while the bottom part
shows the norm of the error against the number of iterations.Note that the non-monotonicity
of the remainder term can be observed for the application ofGLSQR .
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FIGURE 4.5. GLSQRfor differentD1 (Example4.4).
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FIGURE 4.6. GLSQRandQMR for matrix of dimension1000 (Example4.4).

EXAMPLE 4.6. In this example we compute the scattering using the preconditioned
BICG approach for the oil reservoir exampleORSIRR1. The matrix size is1030. We use the
Incomplete LU (ILU) factorization as a preconditioner. Theabsolute values of the approx-
imation from BICG are shown in the top part of Figure4.8, and the bottom part shows the
norm of the error against the number of iterations.

EXAMPLE 4.7. In this example we compute the scattering amplitude by using theLSQR

approach presented in Section2.2. The test matrix is of size187 × 187 and represents
a Navier-Stokes problem generated by the IFISS package [7]. The result is shown in Fig-
ure4.9, again with approximations in the top part and the error in the bottom part.

5. Conclusions.We studied the possibility of usingLSQR for the simultaneous solution
of forward and adjoint problems. Due to the link between the starting vectors of the two
sequences, this method did not show much potential for a practical solver. As a remedy, we
proposed to use theGLSQR method, which we carefully analyzed showing its relation toa
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FIGURE 4.7. Approximations to the scattering amplitude and error (Example4.5).
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FIGURE 4.8. Approximations to the scattering amplitude and error (Example4.6).

block-Lanczos method. Due to its special structure, we are able to choose the two starting
vectors independently, and can therefore approximate the solutions for the forward and ad-
joint systems at the same time. Furthermore, we introduced preconditioning for theGLSQR

method and proposed different preconditioners. We feel that more research has to be done to
fully understand which preconditioners are well-suited for GLSQR, especially with regard to
the experiments where different singular value distributions were used.

The approximation of the scattering amplitude, without first computing solutions to the
linear systems, was introduced based on the Golub-Kahan bidiagonalization and its connec-
tion to Gauss quadrature. In addition, we showed how the interpretation ofGLSQR as a
block-Lanczos procedure can be used to allow approximations of the scattering amplitude
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FIGURE 4.9. Approximations to the scattering amplitude and error (Example4.7).

directly, by using the connection to block-Gauss quadrature.
We showed that for some examples the linear systems approachusingGLSQR can out-

performQMR, which is based on the nonsymmetric Lanczos process, and others whereQMR

performed better. We also showed howLSQR and GLSQR can be used to approximate the
scattering amplitude on real world examples.
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[27] I. HNĚTYNKOVÁ AND Z. STRAKOŠ, Lanczos tridiagonalization and core problems, Linear Algebra Appl.,
421 (2007), pp. 243–251.

[28] L. D. LANDAU AND E. LIFSHITZ, Quantum Mechanics, Pergamon Press, Oxford, 1965.
[29] J. LU AND D. L. DARMOFAL, A quasi-minimal residual method for simultaneous primal-dual solutions and

superconvergent functional estimates, SIAM J. Sci. Comput., 24 (2003), pp. 1693–1709.
[30] G. MEURANT, Computer Solution of Large Linear Systems, vol. 28 of Studies in Mathematics and its Appli-

cations, North-Holland, Amsterdam, 1999.
[31] N. M. NACHTIGAL , S. C. REDDY, AND L. N. TREFETHEN, How fast are nonsymmetric matrix iterations?,

SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778–795.
[32] C. C. PAIGE AND M. A. SAUNDERS, Solutions of sparse indefinite systems of linear equations, SIAM J.

Numer. Anal, 12 (1975), pp. 617–629.
[33] C. C. PAIGE AND M. A. SAUNDERS, Algorithm 583; LSQR: sparse linear equations and least-squares

problems, ACM Trans. Math. Software, 8 (1982), pp. 195–209.
[34] , LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Soft-

ware, 8 (1982), pp. 43–71.
[35] A. T. PAPADOPOULOS, I. S. DUFF, AND A. J. WATHEN, A class of incomplete orthogonal factorization

methods. II. Implementation and results, BIT, 45 (2005), pp. 159–179.
[36] B. N. PARLETT, D. R. TAYLOR , AND Z. A. L IU, A look-ahead Ĺanczos algorithm for unsymmetric matrices,
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