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STRUCTURED LOW RANK APPROXIMATIONS
OF THE SYLVESTER RESULTANT MATRIX
FOR APPROXIMATE GCDS OF BERNSTEIN BASIS POLYNOMIALS *

JOAB R. WINKLER' AND JOHN D. ALLANT

Abstract. A structured low rank approximation of the Sylvester resultaatrix S(f, g) of the Bernstein basis
polynomialsf = f(y) andg = g(y), for the determination of their approximate greatest commoisalis (GCDs),
is computed using the method of structured total least nornteShe GCD off (y) andg(y) is equal to the GCD of
f(y) andag(y), wherea is an arbitrary non-zero constant, it is more appropriatetwsidler a structured low rank
approximationS(f, g) of S(f, ag), where the polynomialg = f(y) andg = g(y) approximate the polynomials
f(y) andag(y), respectively. Different values ef yield different structured low rank approximatiofi§f, ), and
therefore different approximate GCDs. It is shown that theuision ofa allows to obtain considerably improved
approximations, as measured by the decrease of the singluaswa of S(f, §), with respect to the approximation
obtained when the default valee= 1 is used. An example that illustrates the theory is presemdduture work
is discussed.
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1. Introduction. Resultant matrices are used in several disciplines, iimdu@bot mo-
tion planning p], computer graphicsl[l], computer vision 17] and computer aided geo-
metric design (CAGD), where they are used for the analysispncessing of curves and
surfaces. For example, they allow the transformation ofraecbetween its parametric and
implicit forms, and they can be used to calculate intersegtioints of curves and surfaces.
The application of resultant matrices to CAGD requires thay be expressed in the Bern-
stein basis, rather than the monomial (power) basis, bedéiestransformation of resultant
matrices between these bases may be ill-conditioB2dZ3]. Although resultant matrices
were originally developed for power basis polynomialsythave recently been extended to
Bernstein basis polynomiald,[21, 25], which has increased their applicability to CAGD.

The rank deficiency of the Sylvester resultant masii¥, ¢) [3] is equal to the degree of
the greatest common divisor (GCD) of the polynomigls: f(y) andg = g(y), and thus the
computation of a structured low rank approximatiorn5dff, ¢) is closely related to the com-
putation of an approximate GCD ¢fy) andg(y). This problem has been studied by Corless
et al. [6], Emiris et al. B] and Rupprecht9], all of whom use the singular value decompo-
sition of S(f, g), and Corless et al7] and Zarowski 7], who use th&) R decomposition of
S(f,g). These decompositions do not preserve the structure offilresser matrix, which is
a disadvantage. Padpproximations have also been used to compute an apprex®&D
of two polynomials [L6], and Karmarkar and Lakshmahd] use techniques from optimisa-
tion to compute the smallest perturbations that must beegbpd two polynomials in order
that they have a non-constant GCD.

The method of structured total least norm (STLM§|[has been used to compute a struc-
tured low rank approximation of(f,g) [12, 14, 29], and we extend the work described in
these three papers to consider the situation that occurs Ve rank approximations of
S(f,g) are used to obtain approximate GCDsf¢#) andg(y). This computation is required
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in several problems, including the determination of midtipots of a polynomialq0] and
the cancellation of near pole-zero combinations in corgystems.

The GCD of f(y) andg(y) is equal to, up to an arbitrary scalar multiplier, the GCD of
f(y) andag(y) wherea is a non-zero constant. Also, since the ranl§¢f, g) is equal to the
rank of S(f, ag), andS(f, ag) # aS(f, g), itis more appropriate to considsf f, ag) when
low rank approximations of the Sylvester resultant matr&xwsed for the computation of ap-
proximate GCDs. In particular, the inclusion @fallows significantly improved answers to
be obtained, even aftei(y) andg(y) have been normalised in the same man@é}. [Previ-
ous work on the computation of approximate GCDs has notdtedw, with the consequence
that unsatisfactory results may have been computed.

The method of STLN has been used to compute a structured lokvapproximation
of the Sylvester resultant matrix for power basis polyndsnia4], and it is extended in this
paper to Bernstein basis polynomials. It is important teertbat a low rank approximation
of S(f,g) cannot be computed by the deletion of its small singularaslbecause the low
rank matrix is not a resultant matrix, that is, the struciré'( f, ¢) is not preserved in this
low rank approximation.

This paper contains two contributions that improve the ityiaff the computed results
and have not been considered previously:

1. The importance ofv. Previous work on the computation of approximate GCDs has
not considered the scaling parametethat is, the value: = 1 is used. The theoret-
ical justification for includingv is stated above, and the example in Seclictearly
shows its computational importance. Furthermore, it issshim the example, and
confirmed by other examples that are not included in the papat although the
optimal valuea* of « is associated with a small perturbation of the given inex-
act coprime polynomials in order that they have a non-constpproximate GCD,

a small change ia* yields an approximate GCD that is obtained by a significantly
larger perturbation of the given inexact polynomials.

2. The algorithm for the solution of the equation that resuitéf the method of STLN.
The method of STLN yields a non-linear least squares prohigtm an equality
constraint (the LSE problem), which is defined as

H;‘Hz[fd}

whereAx = bis an over-determined set of linear algebraic equations4ands full
column rank, and the constraiBtx = d is consistent and therefore has at least one
solution. The weight must be large in order that the constraint is satisfied exactl
and it is therefore required to normalise the constraint bgrestant: such that

E

that is, the objective function and constraint are of the esamagnitude. A large
value of r thus implies that the normalised constraint is enforceohsfly, but this
normalisation byk is not considered in previous work that has used the method of
weights [L2, 14, 29].

The method of weights is problematic, because it requir@srthe specified heuris-
tically. Van Loan [L5] recommends that = ¢~ 2, but Barlow [l], and Barlow and
Vermulapati ], recommend that = ¢~ 3, wheree is the machine precision. The
heuristic nature of is a disadvantage, because the convergence of the method of
weights is critically dependent on the valuerofSpecifically, the algorithm may not

converge, or it may converge to an inaccurate solution, oraiy converge slowly,

7> 1,

min ||Az — b||, = min ,
Bxz=d x 9

ifA oll=~I[B d]
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if 7 is too large or too small. Th&R decomposition does not suffer from these
disadvantages, and it is therefore used for the solutioh@LSE problem in this
paper. The method of weights is used, however1id) L4, 29 for the solution of
the LSE problem, and thus the solution algorithm, based e)th decomposition,
that is used in this paper is superior.

The Sylvester resultant matriX( f, «g) and its subresultant matrices are considered in
Section2, and the method of STLN is considered in SectoiThe standard form of the LSE
problem does not impose constraints on the magnitudes @igttierbations that must be ap-
plied in order to induce a non-constant GCDYify) andg(y). It can be argued, however, that
if the signal-to-noise ratio of the coefficients ffy) andg(y) is i, then the maximum allow-
able magnitudes of the perturbationsfdf/) andg(y) are functions of:, and, in particular,
the smaller the value qf, the larger the magnitude of the maximum allowable pertizha
of f(y) andg(y). This topic is discussed in Sectidnand Sectiorb contains an example of
the method of STLN for the construction of a structured lomkrapproximation o5 ( f, ag).
Sections6 and 7 contain, respectively, a discussion of future work and areamy of the
paper.

2. The Sylvester resultant matrix. This section considers the Sylvester resultant ma-
trix and its subresultant matrices for Bernstein basis patyials and scaled Bernstein basis
polynomials. It is shown inZg3, 25] that the Sylvester resultant matri( f, g) of dimen-
sionm + n of the polynomials

s =3 (") a-m ' and g(y)ngi(?)(l—w"-iyi

=0

S(f,9)=D7'T(f.9), (2.1)

whereD, T(f,g) € R(mAn)x(m+n)

Dl =diag |t TR GEE) GE )
and
[ ao(5) o (5) ]
a(y) bi ()

: o a(p) 1 bo(5)

TED = |ani () @l () o w()

I ) '
0 ame1 () o baea(,)
! @ (i) bu()

The matrixT'(f, g) is the Sylvester resultant matrix ¢fy) andg(y) when these polyno-
mials are expressed in the scaled Bernstein basis, whoseftiastions for a polynomial of
degreen are

oi(y) = (1— y)’”_igﬂ7 1=0,...,n. (2.2)
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It is clear thatT'(f, ¢g) displays the strong diagonal pattern of its power basisvetgrit, but
the diagonal matriX) destroys this pattern. This makes the construction of ztsired low
rank approximation of the Bernstein basis resultant mai(iX, g) more involved than the
construction of its power basis equivalent.

It was stated in Sectiof that it is necessary to consid&( f, ag), rather thanS(f, g),
when it is desired to compute approximate GCDg @f) andg(y). This requirement follows
from the structure ofS(f, g), because the coefficients ¢fy) and g(y) are decoupled in
this matrix, with the consequence that the numerical ptaseof S(f, ag) (for example, its
singular values and distance to singularity) are stronglyethdent upor.

2.1. Subresultants of the Bernstein basis Sylvester resalit matrix. The subre-
sultant matricesS,(f,ag), k = 1,...,min(m,n), are formed from the resultant matrix
S(f,«ag) by deletion of some of its rows and columns. In particulae th subresultant
matrix Sy (f, ag) is formed by deleting the lagk — 1) columns of the coefficients of(y),
the last(k — 1) columns of the coefficients aig(y), and the lastk — 1) rows, from which
it follows that Sy (f, ag) is of size(m +n — k+ 1) x (m +n — 2k + 2).

ExAMPLE 2.1. Consider the polynomial&(y) andg(y) for m = 4 andn = 3. Then,
the first subresultant matri%; (f, ag) = S(f, ag) is

[20(o) abo(;) T
(321 4 (8)3 3
L N N
o e
aala) e2(d) @) eba(l) eba(3) ebiy)  abo(h)
G, G © 60 6 © 0./
aaly) aa3)  e2(3) abs3) aba(3)  abi(3)
RG] O 0O
aals)  ea(y) aba(3)  abx(3)
® 0 6 0,
aa(3) abs (3)
L (@) ()
while the second and third subresultant matricgs f, ag) andSs(f, ag), are
ao (3) abo (3)
O . O CORETORE.
“1(1) aO(O) O‘bll(l) "‘bo‘(O) (o) (o)
N /R G R R () (D) ()
R N i IO g
) @) ) e )| T @ @)
N N R R ) o) ans(l) ()
) o) aba(3)  aba(3) G O 0,
I @ 0, s(3) ot ()
a4(4) ab3‘(3) L (Z) (Z) _
i () )

The following theorem is easily established.

THEOREM?2.2. A necessary and sufficient condition for the polynomjéls andag(y)
to have a common divisor of degrke> 1 is that the rank o5y, (f, ag) is less thar(m +n —
2k +2).
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Each matrixSy (f, ag) is partitioned into a vectat, € R™*+"~*+1 and a matrix4;, of
size(m+n—k+1) x (m+n—2k+ 1), wheregy, is the first column o} (f, ag), and A
is the matrix formed from the remaining columns$f( f, ag),

Si(fiag)=1[ ck | Ax ] =] cx | coeffs. off(y) | coeffs. ofag(y) |. (2.3)

The coefficients off (y) occupy(n — k) columns, while those ofg(y) occupy(m — k + 1)
columns ofSi(f, ag). Theorem.2and2.3show that the computation of the GCD ffy)
andag(y) requires that the equation

Agx = ¢, x € Rmin-2k+l (2.4)

be consideredi]2, 14, 29).

THEOREM 2.3. If k& < min (m,n) is a positive integer, then the dimension of the null
space ofSy(f, ag) is greater than or equal to one if and only #.6) possesses a solution.

The polynomialsf(y) and g(y) are inexact and coprime in many examples, in which
case 2.4) does not possess a solution for &all= 1, ..., min (m,n). The construction of
a structured low rank approximation 61 f, ag) therefore requires the computation of per-
turbationsd f (y) andadg(y), such that the polynomialg(y) + 6 f(y) anda(g(y) + dg(y))
have a non-constant GCD, which necessarily implies thattaped form of £.4) must be
considered. Furthermore, the coefficient matrixdrd) and its perturbed form must have the
same structure, and the right hand side vectoRid) @nd its perturbed form must have the
same structure, in order to guarantee that the perturbeatiequs derived from the subresul-
tant matrices o5 (f + 0 f, a(g + dg)).

It was noted above that the matdXin (2.1) destroys the diagonal pattern §ff, ag),
but thatT'(f, «g), the Sylvester resultant matrix ¢fy) andag(y) when they are expressed
in the scaled Bernstein basi&.?), preserves this pattern. It is therefore desirable tooperf
computations on the scaled Bernstein basis formg(gj andag(y), since this makes the
imposition of the structure on the perturbed form 2] easier. It may be argued that this
choice leads to inferior numerical results because thedeimbasis is numerically superior
to the scaled Bernstein basis, but it is shown in Sediitmat excellent numerical results are
obtained with the scaled Bernstein basis.

2.2. Subresultants of the scaled Bernstein basis Sylvestessultant matrix. The sub-
resultant matrixS (f, ag) can be decomposed as

Sk(fa ag) = D]g_lTk’(fv Oég),

whereTy(f, ag) € RUmHn—ktl)x(min=2k+2) jg the kth subresultant matrix of'(f, ag),
that is,Tx(f, ag) is formed fromT'( f, ag) by deleting the lastk — 1) columns off(y), the
last(k — 1) columns ofag(y), and the lastk — 1) rows. Similarly, the diagonal matri®y,
of orderm + n — k + 1, is obtained by deleting the lagt — 1) rows and the lastk — 1)
columns ofD.

The matrixTy (f, ag) is written in the form given inZ.3) for Sk (f, ag),

Ti(f,ag) =] dp | Fr | =] dr | coeffs. off(y) | coeffs. ofag(y) ],
whered;, € R™tn—k+1 gand f, € R(m+n—k+1)x(m+n=2k+1) |t therefore follows that
Sk(f,ag)=D;' [ de | Fx ] =[ Di'de | Dy'Fy ],
and thus 2.3) yields
e, = Dy Ny, (2.5)
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and
Ay = D' Fy. (2.6)
It therefore follows from 2.5) and @.6) that (2.4) is replaced by
Frx = dk, (2.7)

which assumes thgt(y) andg(y) are expressed in the scaled Bernstein basis.
It was noted above that(y) andg(y) are inexact and coprime in many examples, and
thus a perturbed form oR(7) must be considered,

(Fk—l-Ek)QTde—f—hk, (28)

whereh,, € Rm+7—k+l and B, € R(mtn—ktl)x(m+n=2k+1) "gych that this equation has
an exact solution. The matricé% andE} have the same structure, as well as the veciprs
and hy, and it is therefore necessary to determine the smallasttated perturbation&;,
andh;, such that 2.8), which is an over-determined linear system, possessdsitioso This
constrained equation is solved by the method of structurtd keast norm 18], which is
considered in the next section.

3. The method of structured total least norm. It is shown in this section that the
method of structured total least norm (STLN) can be used napete the smallest perturba-
tions £, andh,, such that2.8) is satisfied, wheré}, and £, have the same structure, add
andh;, have the same structure.

The Sylvester resultant matrik, ( f, ag) for the scaled Bernstein basis forms ffy)
andg(y) is given by

Tk(f,Oég): [ dk | Fk:]

[ ao(7) abo 5) ]
a(y) abi (7)
: ' ao('y) : abo ()
= am-1(,") ar(7)  abua(,”y) abi(7) |
Qm, (2) : ab" (Z) :
Gm—1 (mnil) abnfl (nil)
L ey abn(y)
and thus the structured error maté (=) is given by
Bk(z) = [ hk, ! Ek ]
[ 2o Zm+1 i
21 20 Zm+2 Zm+1
2 : Zm+2
Zm—1 : . 20 Zm+4n : . Zm+1
= . . , (3.1)
Zm Zm—1 i 21 Zm+n+1 Zm+n i Zm+2
Zm Zm4n+1
Zm—1 Zm4n
L Zm Zm+n+1]
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wherehy, is equal to the first column @B (z), andEy, is equal to the lagtm + n — 2k + 1)
columns of B (z). It is immediate thatBy(z) is a Sylvester resultant matrix, and thus
alsoTy(f, ag) + Bi(z) is a resultant matrix. The elementof z € R™+"*2 js the perturba-
tion of the coefficient:;, : = 0, ..., m, of f(y), and the element,, ., ; is the perturbation
of the coefficientw;, 7 = 0,...,n, of ag(y).

It follows from the definitions of the vectors, andz that there exists a matrik, of
size(m+mn—k+1) x (m+n+ 2) such that

hk — sz _ Im+1 0m+1,n+1
Onfk,erl Onfk,nJrl

where [, is the identity matrix of ordefn + 1 and the subscripts on the zero matrices
indicate their order.

The residual(z, z) that is associated with an approximate solution08), due to the
structured perturbation's, and Ey, is

r(z,x) = di + hy, — (Fi + E)z, hy, = Pyz, Ey = Ey(2). (3.2)

Since it is required to compute the smallest perturbatigreuch that 2.8) has a solution,
it is necessary to minimisgH z|| subject to the constraint(z, ) = 0. The matrixH, of

orderm + n + 2, accounts for the repetition of the elements:of By (z). In particular, it
follows from (3.1) that each of the perturbatiors i = 0, ..., m, occurs(n — k + 1) times,

and each of the perturbatioasi = m + 1,...,m +n + 1, occurs(m — k + 1) times in

By(z), and thus

go[H 0] _[ =kt D)l 0
o Hy | T 0 (m—k+ 1)1

The objective function in]2, 14, 29] is ||z||, but this measure fails to consider the number of
occurrences of;,i = 0,...,m +n + 1,in Bg(z). The2-normis used|| - || = || - ||2, and
thus this constrained minimisation is an equality constdileast squares problem (the LSE
problem).

It is necessary to replace the vectgyx by the vectory, z,

Ykz = Ek(E, Yk = Yk(l), Ek = Ek(z)7
and thus

whereY;, € R(mtn—k+l)x(m+n+2) = Closed form expressions for the elementsypfare
derived using the expressions for the elementg&gfwhich are easily obtained fron3.().

The functionr(z, x) is non-linear, and thus iterative algorithms based on afiapprox-
imation are used for the solution ofz,z) = 0. In particular, if it is assumed that second
order terms are sufficiently small such that they can be oegdethen, sincé, = h(z) and
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Ey = Ey(z), using @3.3) we obtain

r(z+0z,x 4+ 0x) =di + hi(z + 0z) — (Fi, + Ex(z + 02)) (z + dx)
~dy + Ppz + P62z — Fr,o — Fi,6x

m+n+1
Zq

=0 3.4
=d + Pz + P,oz — Frx — Fi.ox
- Ek{E — Ek&t — 5Ek$
= ’I‘(Z, x) + Pz — Fi,ox — Erdxr — Y02
=r(z,x) — (Yy — Px)oz — (Fy + Ex)dx.
The constrained minimisation can therefore be approxidlaye
rr(%in |H(z+62)|
subject to
7 =r(z,x) — (Yp — Py)oz — (F + Ej)dx = 0.
This problem is of the form
min ||Fw — p|| subjectto Cw = gq, (3.5)

where the function to be minimised represents the norm opéntirbations;,

Bo-ol= (5 01| |- -2

b

and the constraint = 0 follows from (3.4),

Cw—q=[ Yi—PF,) (Fu+E) | [ g; } —r(z,2) =0.

The constraint equatiofw = ¢ is under-determined, which guarantees that the mininoisati
is performed over an infinite number of vectass Methods for the solution of3(5) are
discussed in Sectiob. 1.

It is recalled that is the vector of perturbations ¢f(y) andag(y) when they are ex-
pressed in the scaled Bernstein basis, and thus the calrszaéed Bernstein basis polyno-

mials are
i (ai (T) + zl> (1 —y)™ iy

i=0

and

i (abi (?) + Zm+1+z‘) (1—y)" "y,

i=0

respectively. The Bernstein basis form of these polynaisgl

fly) = Zm: <ai + (;)) (T) (1—y™ iy’

=0
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and

9(y) = _LO <b + ZT;F;) (?) (1=y)" "y,

respectively, where the multiplier has been omitted frori(y). It follows that the pertur-
bations of the coefficients of the given inexact Bernsteisidbaolynomialsf(y) and g(y)
are

i=0,...,m, and " i_o . n, (3.6)

respectively.

3.1. Methods for solution of the LSE problem. There exist several methods for the so-
lution of the LSE problem, including the method of weightis¢ecalled the penalty method)
and the null space metho#,[10]. The method of weights requires a weight whose value
is defined heuristically, which is a disadvantage becausaamrect value may lead to the
algorithm converging very slowly, or not converging at all,converging to an inaccurate so-
lution [1]. The@ R decomposition does not suffer from this disadvantage, tamas therefore
used in the example in Secti@n

It is recalled that §.4) is a linear approximation of a non-linear expression, dral t
extensions of th&€) R decomposition for the solution of the LSE problem that ideluhis
linearisation, and the calculation of the initial formszofindz in the iterative scheme, are
considered in Algorithm8.1 and4.1 in [24].

4. Bounds on the magnitude of the perturbations.The coefficients off (y) andg(y)
are known inexactly in many practical examples, and repatdf the experimental procedure
or the use of another computational algorithm that genétatem will yield slightly different
values of these coefficients. This shows that the given ittep@ynomials are one realisation
of an infinite number of noisy realisations of the theordljcaxact data, and thus the coeffi-
cients of the given inexact polynomiaf$y) andg(y) can be perturbed by an amount that is
governed by the signal-to-noise rajioof the data. In particular, the smaller the valueuof
the larger the allowable perturbations of the coefficiefithe inexact polynomials.

It follows from (3.6) that if the vectors:; € R™*! andz, € R"*! are defined as

20 z1 . Zm—1 Zm :|

(©)

=]

and

respectively, therr; andz,/« are the structured perturbations computed by the method of
STLN that are applied to the coefficients of the Bernsteinsbaslynomialsf (y) andg(y).
Since||f|| /i and||g|| /1 are the maximum allowable perturbationsfdf/) andg(y), respec-
tively, it follows that

251l < ”i' and LZ’H < /i', (4.)

and all vectorsy and z, that satisfy these inequalities and the LSE problem ar¢iriegie
perturbations of the given inexact data.
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5. An example. This section contains an example that illustrates how taerthof the
previous sections can be used to construct structured lokvagaproximations of( f, ag) in
order to compute approximate GCDsfdfy) andg(y). The noisy polynomialg(y) andg(y)
are normalised by the geometric mean of their Bernsteirslwasfficients because computa-
tional experiments showed that this form of scaling yieldsngood results for power basis
polynomials, and, in particular, significantly better fésthan monic scaling.

Consider the Bernstein basis form of the exact polynomials

fy) = (y—0.6)°(y —0.8)" (y — 0.9)"" (y — 0.95)°
and
i) =y —06)"*(y—0.7)" (y—0.9),

whose GCD is of degre&3, and thus the rank oj’i(ﬁg) is equald0. The13th subresultant
matrix, corresponding to the value= 13, was selected, and was set equal ta0®. The
noisy polynomialsf(y) andg(y) are given by

f)=Ff)+6f(y) and  g(y) = fy) +5a(y),

where

_ @l _ lawl
[ExzenimmitrIenl

and, as noted abovg,(y) andg(y) are normalised by the geometric mean of their coeffi-
cients!

The results of the computational experiments are showngdnrEi5.1 In particular,
Figure 5.1-(i) shows the ratig| f|| /., which is the maximum allowable magnitude of the
perturbations of the coefficients ¢fy), and the variation withy of the computed value of
lz¢]l, where both quantities are defined ). Figure5.1-(ii) is the same as Figure. 1-(i),
but for g(y) instead off (y).

It is seen that the first inequality i (1) is satisfied for all values af in the specified
range, but the second inequality ih.J) is only satisfied forlog,, @ > 1.72. This is the
minimum value ofa for which the bounds on the structured perturbations of tedficients
of f(y) andg(y) are satisfied. Figurg.1-(iii) shows the variation withy of the normalised
residuall|rnorm||, Where

I

r(z,z)
Tnorm = ,
norm ||dk + th

andr(z, z) is defined in 8.2). It is seen that this variation is significant and, in pare,
the graph shows that there exist valuesxofor which the normalised residual is large. It
therefore follows that there does not exist a structuredimdf;, and a structured vector
hi such that 8.2) is satisfied for these values of By contrast, it is also seen that there
exist values ofx for which the normalised residual is equal@(10~'¢), which implies
that 3.2) is satisfied (to within machine precision). The normalisesidual is minimum
whena = 1028, and this is therefore the optimal valuecaf

1The coefficients of the perturbed polynomigig/) andg(y), and not the coefficients of the exact polynomials

f(y) andg(y), are normalised since the latter polynomials are not knowaulm of the inexact nature of the data
in most practical examples.
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FIGURE5.1. The variation with of: (i) the maximum allowable value @t || (a), which is equal tq| f|| /1,
and the computed value @t || (b); (i) the maximum allowable value ¢z, ||/« (&), which is equal td|g|| /1,
and the computed value [, || /« (b); (iii) the normalised residuallrnorm||; (iv) the singular value ratiarao /o41.
The horizontal and vertical axes are logarithmic in the fplots.

The theoretically exact rank &f(f, §) is equal to10, and thus a measure of the effective-
ness of the method of STLN is the ratjo= 049 /04; of the Sylvester resultant matri(f, §),
wheref = f(y) andg = g(y) are the polynomials that are computed by the method of STLN,
o, 1s theith singular value oS(f, g), and the singular values are arranged in non-increasing
order. Figures.1-(iv) shows the variation of with «, and it is seen that it is approximately
reciprocal, to within a scale factor, with respect to theataon of ||rnorm|| With «, as shown in
Figure5.1-(iii). In particular, it is seen that large valuesofre associated with small values
of [|7noml|, and thaty = O (10®) at the optimal value ofi. Figures5.1-(iii) and (iv) clearly
show the importance of including the parametein the analysis, and specifically, a poor
choice ofa can lead to unsatisfactory results (the ratiis small and the normalised residual
lnorml| is large). It is also noted that the default value£ 1) may lead to poor results, as
shown in Figurel.4 in [24].

Figure5.2 shows the normalised singular values of the Sylvestertasuinatrix of the
theoretically exact polynomiaﬁ(y) andg(y), the given inexact polynomials(y) andg(y),
and the corrected polynomiafgy) andg(y) for « = 1028, which is the optimal value of
«. All the polynomials are scaled by the geometric mean of thaéfficients. It is seen from
Figure5.2-(i) thatS(f, §) is of full rank, which is incorrect becaugeandg are not coprime,
and Figures.2-(ii) shows that the addition of noise affects its small silag values more than
its large singular values. The results fﬁ(ﬁg), which are shown in Figurg.2-(iii), are
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FIGURE 5.2. The normalised singular values, on a logarithmic scale hef ylvester resultant matrix for (i)
the theoretically exact polynomialgy) andg(y), <. (i) the given inexact polynomialg(y) andg(y), LJ; (iii) the
corrected polynomialg () andg(y) for o = 1028, x. All the polynomials are normalised by the geometric mean
of their coefficients.

significantly better because its (numerical) rank(s which is the correct value. Since the
perturbations that are used for the formation of this madri by construction, structured,
and its rank is equal td0, this matrix is a structured low rank approximationf, cg),
for a = 10%%, that can be used to compute an approximate GCP(gf andg(y).

It is seen from Figure§.1-(iii) and (iv) that there are many values af> 10'-72 such
that the ratioy is large and the normalised residljahorm|| is sufficiently small. There exist
therefore many structured low rank approximation$5¢f, ag) that satisfy tight bounds on
l|7norml|» Which is an error bound for the satisfaction 8f4), and also satisfy tight bounds on
the ratio~y, which is a measure of the numerical rank4ff, g). Each of these approxima-
tions yields a different approximate GCD, and additionaistoaints can be imposed on the
optimisation algorithm in order to select a particular stamed low rank approximation of
S(f,ag), and thus a particular approximate GCD.

This example only considers one value of the signal-toencasio , and one subresul-
tant matrix. The effects of varying one or both of these patans is considered in Sec-
tion 4 in [24]. For example, if the upper bounds [pf ;|| and||z,|| /o are too small because
1 is large, then it may not be possible to compute a structuyedrank approximation of
a Sylvester resultant matrix whose perturbationare within specified bounds.

The computational results in this example, as shown in Egful and5.2, are typical
of those obtained from the large number of computationaéerpents that were performed
on different pairs of Bernstein basis polynomials, all ofiethwere of high degree and had



ETNA
Kent State University
http://etna.math.kent.edu

STRUCTURED LOW RANK APPROXIMATION 153

a large number of multiple roots. Furthermore, the resnoliEguress.1and5.2for Bernstein
basis polynomials are similar to the results24][for power basis polynomials.

The integelk is the degree of the common divisor, and this is set by the &sergiven
error tolerances and signal-to-noise ratiothe degree of the approximate GCD is defined
by the largest value of for which the LSE problem has a solution, but it cannot be guar
anteed that there exists an approximate GCD of specifieceddgr given error tolerances
and signal-to-noise ratip. The absence of an approximate GCD that satisfies thesgarite
manifests itself by the normalised residljahorm|| being significantly greater than machine
precision(10~16), that is, the equality constraitw = ¢ is not satisfied, and the numerical
rank of the Sylvester resultant mati$ 1, g) is not defined. In this case, it may be necessary
to reduce the value of the integkiin order to compute an approximate GCD. Finally, Fig-
ures5.1-(iii) and 5.1-(iv) provide the necessary certification of the computesiitebecause
if ||rnorm|| & 1071, then the equality constraint is satisfied, and Figute(iv) shows that
S(f, ) is singular at the solution, in which cagéy) andg(y) have a non-constant GCD.

An approximate GCD of the inexact polynomigi§y) andg(y) can be computed from
the corrected polynomialﬁ(y) andg(y). The simplest method involves & or QR fac-
torisation of the Sylvester resultant matﬂ)@f, g), in which case the coefficients of the GCD
are contained in the last non-zero row of the upper trianguktrices/ and R. This method
does not involve the coprime factors ¢fy) and g(y), which must be compared with the
method in P8], which involves the solution of a non-linear least squazgsation for the
GCD and the coprime factors.

6. Future work. The example in Sectiob shows that the method of STLN allows
a structured low rank approximation of a Sylvester restiltaatrix, and an approximate
GCD of two polynomials, to be computed. Although this exaepind other examples on
high degree polynomials with multiple roots that were aidi but are not included, show
that the method of STLN is effective, there exist severalésshat must be addressed in order
to improve its viability:

e This paper has shown the importance of including the scalimgmeter, but a cri-
terion and algorithm for the computation of its optimal v@lvere not discussed.
Figures5.1-(iii) and 5.1-(iv) are highly oscillatory, and thus a criterion that ledd
a non-linear equation for the calculation of the optimalreadfa, and for which an
initial estimate is required, may not converge to the optjrmaa satisfactory, solu-
tion. A possible solution to this problem is the reformwatiof the LSE problem,
such that instead of minimising z||*, the revised objective function

(n—k+ 1)2§: (@) +(m—k+ 1)2zn: (ZZLF;)

=0 v i=0 4

is minimised. This objective function, which is equivalémthe minimisation of the
backward error, may be particularly important for polynateiwhose coefficients
differ by several orders of magnitude.

e The determination of the degree of the GCD, that is, the oofithe subresultant
matrix, is an important part of the application of the metled&TLN to the com-
putation of an approximate GCD of two polynomials. One mdthwolves the
application of a threshold to the small singular values,sltlee value of the thresh-
old is a function of the nois€B]. The noise level may not be known, or it may only
be known approximately, which raises disadvantages abesetthreshold depen-
dent measures. A potential solution to this problem thasechaé require knowledge
of the noise level is the use of minimum description lengthicl is an information
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theoretic measure for the estimation of the rank of a maff [

7. Summary. This paper has considered the use of the method of STLN focdhe

struction of structured low rank approximations of the $gher resultant matrix in order to
compute approximate GCDs of two inexact polynomials. Itlieen shown that the method is
effective in computing these structured approximationstiiat it is necessary to include the
parametery in the optimisation, because failure to do so could lead satisfactory results.
This parameter arises because the coefficienf$pfandg(y) in S(f, g) are decoupled, with
the consequence that one polynomial can be scaled relatitie bther polynomial.

The important issue of the development of fast algorithnas é&xploit the structures of

the matrices has not been addressed because this papethhesrmidered the feasibility of
the method of STLN, with the new contributions stated in Bect, for the computation of
an approximate GCD of two polynomials. The very good comiputal results in this paper
and 4] show that the development of these fast algorithms musbhbsidered in order to
enhance the practical viability of the method.
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