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STRUCTURED LOW RANK APPROXIMATIONS
OF THE SYLVESTER RESULTANT MATRIX

FOR APPROXIMATE GCDS OF BERNSTEIN BASIS POLYNOMIALS ∗

JOAB R. WINKLER† AND JOHN D. ALLAN†

Abstract. A structured low rank approximation of the Sylvester resultant matrixS(f, g) of the Bernstein basis
polynomialsf = f(y) andg = g(y), for the determination of their approximate greatest common divisors (GCDs),
is computed using the method of structured total least norm. Since the GCD off(y) andg(y) is equal to the GCD of
f(y) andαg(y), whereα is an arbitrary non-zero constant, it is more appropriate to consider a structured low rank
approximationS(f̃ , g̃) of S(f, αg), where the polynomials̃f = f̃(y) andg̃ = g̃(y) approximate the polynomials
f(y) andαg(y), respectively. Different values ofα yield different structured low rank approximationsS(f̃ , g̃), and
therefore different approximate GCDs. It is shown that the inclusion ofα allows to obtain considerably improved
approximations, as measured by the decrease of the singular valuesσi of S(f̃ , g̃), with respect to the approximation
obtained when the default valueα = 1 is used. An example that illustrates the theory is presented and future work
is discussed.
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1. Introduction. Resultant matrices are used in several disciplines, including robot mo-
tion planning [5], computer graphics [11], computer vision [17] and computer aided geo-
metric design (CAGD), where they are used for the analysis and processing of curves and
surfaces. For example, they allow the transformation of a curve between its parametric and
implicit forms, and they can be used to calculate intersection points of curves and surfaces.
The application of resultant matrices to CAGD requires thatthey be expressed in the Bern-
stein basis, rather than the monomial (power) basis, because the transformation of resultant
matrices between these bases may be ill-conditioned [22, 23]. Although resultant matrices
were originally developed for power basis polynomials, they have recently been extended to
Bernstein basis polynomials [4, 21, 25], which has increased their applicability to CAGD.

The rank deficiency of the Sylvester resultant matrixS(f, g) [3] is equal to the degree of
the greatest common divisor (GCD) of the polynomialsf = f(y) andg = g(y), and thus the
computation of a structured low rank approximation ofS(f, g) is closely related to the com-
putation of an approximate GCD off(y) andg(y). This problem has been studied by Corless
et al. [6], Emiris et al. [8] and Rupprecht [19], all of whom use the singular value decompo-
sition ofS(f, g), and Corless et al. [7] and Zarowski [27], who use theQR decomposition of
S(f, g). These decompositions do not preserve the structure of the Sylvester matrix, which is
a disadvantage. Padé approximations have also been used to compute an approximate GCD
of two polynomials [16], and Karmarkar and Lakshman [13] use techniques from optimisa-
tion to compute the smallest perturbations that must be applied to two polynomials in order
that they have a non-constant GCD.

The method of structured total least norm (STLN) [18] has been used to compute a struc-
tured low rank approximation ofS(f, g) [12, 14, 29], and we extend the work described in
these three papers to consider the situation that occurs when low rank approximations of
S(f, g) are used to obtain approximate GCDs off(y) andg(y). This computation is required
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in several problems, including the determination of multiple roots of a polynomial [20] and
the cancellation of near pole-zero combinations in controlsystems.

The GCD off(y) andg(y) is equal to, up to an arbitrary scalar multiplier, the GCD of
f(y) andαg(y) whereα is a non-zero constant. Also, since the rank ofS(f, g) is equal to the
rank ofS(f, αg), andS(f, αg) 6= αS(f, g), it is more appropriate to considerS(f, αg) when
low rank approximations of the Sylvester resultant matrix are used for the computation of ap-
proximate GCDs. In particular, the inclusion ofα allows significantly improved answers to
be obtained, even afterf(y) andg(y) have been normalised in the same manner [24]. Previ-
ous work on the computation of approximate GCDs has not includedα, with the consequence
that unsatisfactory results may have been computed.

The method of STLN has been used to compute a structured low rank approximation
of the Sylvester resultant matrix for power basis polynomials [24], and it is extended in this
paper to Bernstein basis polynomials. It is important to note that a low rank approximation
of S(f, g) cannot be computed by the deletion of its small singular values, because the low
rank matrix is not a resultant matrix, that is, the structureof S(f, g) is not preserved in this
low rank approximation.

This paper contains two contributions that improve the quality of the computed results
and have not been considered previously:

1. The importance ofα. Previous work on the computation of approximate GCDs has
not considered the scaling parameterα, that is, the valueα = 1 is used. The theoret-
ical justification for includingα is stated above, and the example in Section5 clearly
shows its computational importance. Furthermore, it is shown in the example, and
confirmed by other examples that are not included in the paper, that although the
optimal valueα∗ of α is associated with a small perturbation of the given inex-
act coprime polynomials in order that they have a non-constant approximate GCD,
a small change inα∗ yields an approximate GCD that is obtained by a significantly
larger perturbation of the given inexact polynomials.

2. The algorithm for the solution of the equation that results from the method of STLN.
The method of STLN yields a non-linear least squares problemwith an equality
constraint (the LSE problem), which is defined as

min
Bx=d

‖Ax − b‖2 = min
x

∥

∥

∥

∥

[

A
τB

]

x −

[

b
τd

]
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∥

∥

∥

2

, τ ≫ 1,

whereAx = b is an over-determined set of linear algebraic equations andA has full
column rank, and the constraintBx = d is consistent and therefore has at least one
solution. The weightτ must be large in order that the constraint is satisfied exactly,
and it is therefore required to normalise the constraint by aconstantκ such that

∥

∥

[

A b
]
∥

∥ = κ
∥

∥

[

B d
]
∥

∥ ,

that is, the objective function and constraint are of the same magnitude. A large
value ofτ thus implies that the normalised constraint is enforced strongly, but this
normalisation byκ is not considered in previous work that has used the method of
weights [12, 14, 29].
The method of weights is problematic, because it requires thatτ be specified heuris-
tically. Van Loan [15] recommends thatτ = ǫ−

1
2 , but Barlow [1], and Barlow and

Vermulapati [2], recommend thatτ = ǫ−
1
3 , whereǫ is the machine precision. The

heuristic nature ofτ is a disadvantage, because the convergence of the method of
weights is critically dependent on the value ofτ . Specifically, the algorithm may not
converge, or it may converge to an inaccurate solution, or itmay converge slowly,
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if τ is too large or too small. TheQR decomposition does not suffer from these
disadvantages, and it is therefore used for the solution of the LSE problem in this
paper. The method of weights is used, however, in [12, 14, 29] for the solution of
the LSE problem, and thus the solution algorithm, based on theQR decomposition,
that is used in this paper is superior.

The Sylvester resultant matrixS(f, αg) and its subresultant matrices are considered in
Section2, and the method of STLN is considered in Section3. The standard form of the LSE
problem does not impose constraints on the magnitudes of theperturbations that must be ap-
plied in order to induce a non-constant GCD inf(y) andg(y). It can be argued, however, that
if the signal-to-noise ratio of the coefficients off(y) andg(y) is µ, then the maximum allow-
able magnitudes of the perturbations off(y) andg(y) are functions ofµ, and, in particular,
the smaller the value ofµ, the larger the magnitude of the maximum allowable perturbations
of f(y) andg(y). This topic is discussed in Section4, and Section5 contains an example of
the method of STLN for the construction of a structured low rank approximation ofS(f, αg).
Sections6 and 7 contain, respectively, a discussion of future work and a summary of the
paper.

2. The Sylvester resultant matrix. This section considers the Sylvester resultant ma-
trix and its subresultant matrices for Bernstein basis polynomials and scaled Bernstein basis
polynomials. It is shown in [23, 25] that the Sylvester resultant matrixS(f, g) of dimen-
sionm + n of the polynomials

f(y) =
m
∑

i=0

ai

(

m

i

)

(1 − y)m−iyi and g(y) =
n
∑

i=0

bi

(

n

i

)

(1 − y)n−iyi

is

S(f, g) = D−1T (f, g), (2.1)

whereD,T (f, g) ∈ R
(m+n)×(m+n),
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.

The matrixT (f, g) is the Sylvester resultant matrix off(y) andg(y) when these polyno-
mials are expressed in the scaled Bernstein basis, whose basis functions for a polynomial of
degreen are

φi(y) = (1 − y)n−iyi, i = 0, . . . , n. (2.2)
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It is clear thatT (f, g) displays the strong diagonal pattern of its power basis equivalent, but
the diagonal matrixD destroys this pattern. This makes the construction of a structured low
rank approximation of the Bernstein basis resultant matrixS(f, g) more involved than the
construction of its power basis equivalent.

It was stated in Section1 that it is necessary to considerS(f, αg), rather thanS(f, g),
when it is desired to compute approximate GCDs off(y) andg(y). This requirement follows
from the structure ofS(f, g), because the coefficients off(y) and g(y) are decoupled in
this matrix, with the consequence that the numerical properties ofS(f, αg) (for example, its
singular values and distance to singularity) are strongly dependent uponα.

2.1. Subresultants of the Bernstein basis Sylvester resultant matrix. The subre-
sultant matricesSk(f, αg), k = 1, . . . ,min(m,n), are formed from the resultant matrix
S(f, αg) by deletion of some of its rows and columns. In particular, the kth subresultant
matrix Sk(f, αg) is formed by deleting the last(k − 1) columns of the coefficients off(y),
the last(k − 1) columns of the coefficients ofαg(y), and the last(k − 1) rows, from which
it follows thatSk(f, αg) is of size(m + n − k + 1) × (m + n − 2k + 2).

EXAMPLE 2.1. Consider the polynomialsf(y) andg(y) for m = 4 andn = 3. Then,
the first subresultant matrixS1(f, αg) = S(f, αg) is
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while the second and third subresultant matrices,S2(f, αg) andS3(f, αg), are
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The following theorem is easily established.
THEOREM2.2. A necessary and sufficient condition for the polynomialsf(y) andαg(y)

to have a common divisor of degreek ≥ 1 is that the rank ofSk(f, αg) is less than(m+n−
2k + 2).
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Each matrixSk(f, αg) is partitioned into a vectorck ∈ R
m+n−k+1 and a matrixAk of

size(m + n− k + 1)× (m + n− 2k + 1), whereck is the first column ofSk(f, αg), andAk

is the matrix formed from the remaining columns ofSk(f, αg),

Sk(f, αg) =
[

ck

∣

∣ Ak

]

=
[

ck

∣

∣ coeffs. off(y)
∣

∣ coeffs. ofαg(y)
]

. (2.3)

The coefficients off(y) occupy(n− k) columns, while those ofαg(y) occupy(m− k + 1)
columns ofSk(f, αg). Theorems2.2and2.3show that the computation of the GCD off(y)
andαg(y) requires that the equation

Akx = ck, x ∈ R
m+n−2k+1, (2.4)

be considered [12, 14, 29].
THEOREM 2.3. If k ≤ min (m,n) is a positive integer, then the dimension of the null

space ofSk(f, αg) is greater than or equal to one if and only if (2.4) possesses a solution.
The polynomialsf(y) andg(y) are inexact and coprime in many examples, in which

case (2.4) does not possess a solution for allk = 1, . . . ,min (m,n). The construction of
a structured low rank approximation ofS(f, αg) therefore requires the computation of per-
turbationsδf(y) andαδg(y), such that the polynomialsf(y) + δf(y) andα(g(y) + δg(y))
have a non-constant GCD, which necessarily implies that a perturbed form of (2.4) must be
considered. Furthermore, the coefficient matrix in (2.4) and its perturbed form must have the
same structure, and the right hand side vector in (2.4) and its perturbed form must have the
same structure, in order to guarantee that the perturbed equation is derived from the subresul-
tant matrices ofS (f + δf, α(g + δg)).

It was noted above that the matrixD in (2.1) destroys the diagonal pattern ofS(f, αg),
but thatT (f, αg), the Sylvester resultant matrix off(y) andαg(y) when they are expressed
in the scaled Bernstein basis (2.2), preserves this pattern. It is therefore desirable to perform
computations on the scaled Bernstein basis forms off(y) andαg(y), since this makes the
imposition of the structure on the perturbed form of (2.4) easier. It may be argued that this
choice leads to inferior numerical results because the Bernstein basis is numerically superior
to the scaled Bernstein basis, but it is shown in Section5 that excellent numerical results are
obtained with the scaled Bernstein basis.

2.2. Subresultants of the scaled Bernstein basis Sylvesterresultant matrix. The sub-
resultant matrixSk(f, αg) can be decomposed as

Sk(f, αg) = D−1
k Tk(f, αg),

whereTk(f, αg) ∈ R
(m+n−k+1)×(m+n−2k+2) is thekth subresultant matrix ofT (f, αg),

that is,Tk(f, αg) is formed fromT (f, αg) by deleting the last(k − 1) columns off(y), the
last(k − 1) columns ofαg(y), and the last(k − 1) rows. Similarly, the diagonal matrixDk,
of orderm + n − k + 1, is obtained by deleting the last(k − 1) rows and the last(k − 1)
columns ofD.

The matrixTk(f, αg) is written in the form given in (2.3) for Sk(f, αg),
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[
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]

=
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∣
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,

wheredk ∈ R
m+n−k+1 andFk ∈ R

(m+n−k+1)×(m+n−2k+1). It therefore follows that
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=
[

D−1
k dk

∣

∣ D−1
k Fk

]

,

and thus (2.3) yields

ck = D−1
k dk, (2.5)
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and

Ak = D−1
k Fk. (2.6)

It therefore follows from (2.5) and (2.6) that (2.4) is replaced by

Fkx = dk, (2.7)

which assumes thatf(y) andg(y) are expressed in the scaled Bernstein basis.
It was noted above thatf(y) andg(y) are inexact and coprime in many examples, and

thus a perturbed form of (2.7) must be considered,

(Fk + Ek) x = dk + hk, (2.8)

wherehk ∈ R
m+n−k+1 andEk ∈ R

(m+n−k+1)×(m+n−2k+1), such that this equation has
an exact solution. The matricesFk andEk have the same structure, as well as the vectorsdk

andhk, and it is therefore necessary to determine the smallest structured perturbationsEk

andhk such that (2.8), which is an over-determined linear system, possesses a solution. This
constrained equation is solved by the method of structured total least norm [18], which is
considered in the next section.

3. The method of structured total least norm. It is shown in this section that the
method of structured total least norm (STLN) can be used to compute the smallest perturba-
tionsEk andhk such that (2.8) is satisfied, whereFk andEk have the same structure, anddk

andhk have the same structure.
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and thus the structured error matrixBk(z) is given by
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wherehk is equal to the first column ofBk(z), andEk is equal to the last(m + n − 2k + 1)
columns ofBk(z). It is immediate thatBk(z) is a Sylvester resultant matrix, and thus
alsoTk(f, αg) + Bk(z) is a resultant matrix. The elementzi of z ∈ R

m+n+2 is the perturba-
tion of the coefficientai, i = 0, . . . ,m, of f(y), and the elementzm+1+j is the perturbation
of the coefficientαbj , j = 0, . . . , n, of αg(y).

It follows from the definitions of the vectorshk andz that there exists a matrixPk of
size(m + n − k + 1) × (m + n + 2) such that

hk = Pkz =

[

Im+1 0m+1,n+1

0n−k,m+1 0n−k,n+1

]

z,

whereIm+1 is the identity matrix of orderm + 1 and the subscripts on the zero matrices
indicate their order.

The residualr(z, x) that is associated with an approximate solution of (2.8), due to the
structured perturbationshk andEk, is

r(z, x) = dk + hk − (Fk + Ek)x, hk = Pkz, Ek = Ek(z). (3.2)

Since it is required to compute the smallest perturbationszi such that (2.8) has a solution,
it is necessary to minimise‖Hz‖ subject to the constraintr(z, x) = 0. The matrixH, of
orderm + n + 2, accounts for the repetition of the elements ofz in Bk(z). In particular, it
follows from (3.1) that each of the perturbationszi, i = 0, . . . ,m, occurs(n − k + 1) times,
and each of the perturbationszi, i = m + 1, . . . ,m + n + 1, occurs(m − k + 1) times in
Bk(z), and thus

H =

[

H1 0
0 H2

]

=

[

(n − k + 1)Im+1 0
0 (m − k + 1)In+1

]

.

The objective function in [12, 14, 29] is ‖z‖, but this measure fails to consider the number of
occurrences ofzi, i = 0, . . . ,m + n + 1, in Bk(z). The2-norm is used,‖ · ‖ = ‖ · ‖2, and
thus this constrained minimisation is an equality constrained least squares problem (the LSE
problem).

It is necessary to replace the vectorEkx by the vectorYkz,

Ykz = Ekx, Yk = Yk(x), Ek = Ek(z),

and thus

Ykδz = δEkx, (3.3)

whereYk ∈ R
(m+n−k+1)×(m+n+2). Closed form expressions for the elements ofYk are

derived using the expressions for the elements ofEk, which are easily obtained from (3.1).

The functionr(z, x) is non-linear, and thus iterative algorithms based on a linear approx-
imation are used for the solution ofr(z, x) = 0. In particular, if it is assumed that second
order terms are sufficiently small such that they can be neglected, then, sincehk = hk(z) and
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Ek = Ek(z), using (3.3) we obtain

r(z + δz, x + δx) = dk + hk(z + δz) − (Fk + Ek(z + δz)) (x + δx)

≈ dk + Pkz + Pkδz − Fkx − Fkδx

− Ekx − Ekδx −

(

m+n+1
∑

i=0

∂Ek

∂zi

δzi

)

x

= dk + Pkz + Pkδz − Fkx − Fkδx

− Ekx − Ekδx − δEkx

= r(z, x) + Pkδz − Fkδx − Ekδx − Ykδz

= r(z, x) − (Yk − Pk)δz − (Fk + Ek)δx.

(3.4)

The constrained minimisation can therefore be approximated by

min
δz

‖H(z + δz)‖

subject to

r̃ = r(z, x) − (Yk − Pk)δz − (Fk + Ek)δx = 0.

This problem is of the form

min ‖Eω − p‖ subject to Cω = q, (3.5)

where the function to be minimised represents the norm of theperturbationszi,

‖Eω − p‖ =

∥

∥

∥

∥

[

H 0
]

[

δz
δx

]

− (−Hz)

∥

∥

∥

∥

,

and the constraint̃r = 0 follows from (3.4),

Cω − q =
[

(Yk − Pk) (Fk + Ek)
]

[

δz
δx

]

− r(z, x) = 0.

The constraint equationCω = q is under-determined, which guarantees that the minimisation
is performed over an infinite number of vectorsω. Methods for the solution of (3.5) are
discussed in Section3.1.

It is recalled thatz is the vector of perturbations off(y) andαg(y) when they are ex-
pressed in the scaled Bernstein basis, and thus the corrected scaled Bernstein basis polyno-
mials are

m
∑

i=0

(

ai

(

m

i

)

+ zi

)

(1 − y)m−iyi

and
n
∑

i=0

(

αbi

(

n

i

)

+ zm+1+i

)

(1 − y)n−iyi,

respectively. The Bernstein basis form of these polynomials is

f̃(y) =

m
∑

i=0

(

ai +
zi
(

m
i

)

)

(

m

i

)

(1 − y)m−iyi
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and

g̃(y) =
n
∑

i=0

(

bi +
zm+1+i

α
(

n
i

)

)

(

n

i

)

(1 − y)n−iyi,

respectively, where the multiplierα has been omitted from̃g(y). It follows that the pertur-
bations of the coefficients of the given inexact Bernstein basis polynomialsf(y) andg(y)
are

zi
(

m
i

) , i = 0, . . . ,m, and
zm+1+i

α
(

n
i

) , i = 0, . . . , n, (3.6)

respectively.

3.1. Methods for solution of the LSE problem. There exist several methods for the so-
lution of the LSE problem, including the method of weights (also called the penalty method)
and the null space method [9, 10]. The method of weights requires a weight whose value
is defined heuristically, which is a disadvantage because anincorrect value may lead to the
algorithm converging very slowly, or not converging at all,or converging to an inaccurate so-
lution [1]. TheQR decomposition does not suffer from this disadvantage, and it was therefore
used in the example in Section5.

It is recalled that (3.4) is a linear approximation of a non-linear expression, and the
extensions of theQR decomposition for the solution of the LSE problem that include this
linearisation, and the calculation of the initial forms ofx andz in the iterative scheme, are
considered in Algorithms3.1 and4.1 in [24].

4. Bounds on the magnitude of the perturbations.The coefficients off(y) andg(y)
are known inexactly in many practical examples, and repetition of the experimental procedure
or the use of another computational algorithm that generated them will yield slightly different
values of these coefficients. This shows that the given inexact polynomials are one realisation
of an infinite number of noisy realisations of the theoretically exact data, and thus the coeffi-
cients of the given inexact polynomialsf(y) andg(y) can be perturbed by an amount that is
governed by the signal-to-noise ratioµ of the data. In particular, the smaller the value ofµ,
the larger the allowable perturbations of the coefficients of the inexact polynomials.

It follows from (3.6) that if the vectorszf ∈ R
m+1 andzg ∈ R

n+1 are defined as

zf =
[

z0

(m

0 )
z1

(m

1 )
· · · zm−1

( m

m−1)
zm

(m

m
)

]

and

zg =
[

zm+1

(n

0)
zm+2

(n

1)
· · · zm+n

( n

n−1)
zm+n+1

(n

n
)

]

,

respectively, thenzf andzg/α are the structured perturbations computed by the method of
STLN that are applied to the coefficients of the Bernstein basis polynomialsf(y) andg(y).
Since‖f‖ /µ and‖g‖ /µ are the maximum allowable perturbations off(y) andg(y), respec-
tively, it follows that

‖zf‖ ≤
‖f‖

µ
and

‖zg‖

α
≤

‖g‖

µ
, (4.1)

and all vectorszf andzg that satisfy these inequalities and the LSE problem are legitimate
perturbations of the given inexact data.
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5. An example. This section contains an example that illustrates how the theory of the
previous sections can be used to construct structured low rank approximations ofS(f, αg) in
order to compute approximate GCDs off(y) andg(y). The noisy polynomialsf(y) andg(y)
are normalised by the geometric mean of their Bernstein basis coefficients because computa-
tional experiments showed that this form of scaling yields very good results for power basis
polynomials, and, in particular, significantly better results than monic scaling.

Consider the Bernstein basis form of the exact polynomials

f̂(y) = (y − 0.6)
8
(y − 0.8)

9
(y − 0.9)

10
(y − 0.95)

5

and

ĝ(y) = (y − 0.6)
12

(y − 0.7)
4
(y − 0.9)

5
,

whose GCD is of degree13, and thus the rank ofS(f̂ , ĝ) is equal40. The13th subresultant
matrix, corresponding to the valuek = 13, was selected, andµ was set equal to108. The
noisy polynomialsf(y) andg(y) are given by

f(y) = f̂(y) + δf̂(y) and g(y) = f̂(y) + δĝ(y),

where

µ =

∥

∥f̂(y)
∥

∥

∥

∥δf̂(y)
∥

∥

=

∥

∥ĝ(y)
∥

∥

∥

∥δĝ(y)
∥

∥

and, as noted above,f(y) andg(y) are normalised by the geometric mean of their coeffi-
cients.1

The results of the computational experiments are shown in Figure 5.1. In particular,
Figure 5.1-(i) shows the ratio‖f‖ /µ, which is the maximum allowable magnitude of the
perturbations of the coefficients off(y), and the variation withα of the computed value of
‖zf‖, where both quantities are defined in (4.1). Figure5.1-(ii) is the same as Figure5.1-(i),
but forg(y) instead off(y).

It is seen that the first inequality in (4.1) is satisfied for all values ofα in the specified
range, but the second inequality in (4.1) is only satisfied forlog10 α > 1.72. This is the
minimum value ofα for which the bounds on the structured perturbations of the coefficients
of f(y) andg(y) are satisfied. Figure5.1-(iii) shows the variation withα of the normalised
residual‖rnorm‖, where

rnorm =
r(z, x)

‖dk + hk‖
,

andr(z, x) is defined in (3.2). It is seen that this variation is significant and, in particular,
the graph shows that there exist values ofα for which the normalised residual is large. It
therefore follows that there does not exist a structured matrix Ek and a structured vector
hk such that (3.2) is satisfied for these values ofα. By contrast, it is also seen that there
exist values ofα for which the normalised residual is equal toO

(

10−16
)

, which implies
that (3.2) is satisfied (to within machine precision). The normalisedresidual is minimum
whenα = 102.8, and this is therefore the optimal value ofα.

1The coefficients of the perturbed polynomialsf(y) andg(y), and not the coefficients of the exact polynomials
f̂(y) andĝ(y), are normalised since the latter polynomials are not known because of the inexact nature of the data
in most practical examples.
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FIGURE 5.1. The variation withα of: (i) the maximum allowable value of‖zf‖ (a), which is equal to‖f‖ /µ,
and the computed value of‖zf‖ (b); (ii) the maximum allowable value of‖zg‖/α (a), which is equal to‖g‖ /µ,
and the computed value of‖zg‖/α (b); (iii) the normalised residual‖rnorm‖; (iv) the singular value ratioσ40/σ41.
The horizontal and vertical axes are logarithmic in the fourplots.

The theoretically exact rank ofS(f̂ , ĝ) is equal to40, and thus a measure of the effective-
ness of the method of STLN is the ratioγ = σ40/σ41 of the Sylvester resultant matrixS(f̃ , g̃),
wheref̃ = f̃(y) andg̃ = g̃(y) are the polynomials that are computed by the method of STLN,
σi is theith singular value ofS(f̃ , g̃), and the singular values are arranged in non-increasing
order. Figure5.1-(iv) shows the variation ofγ with α, and it is seen that it is approximately
reciprocal, to within a scale factor, with respect to the variation of‖rnorm‖ with α, as shown in
Figure5.1-(iii). In particular, it is seen that large values ofγ are associated with small values
of ‖rnorm‖, and thatγ = O

(

108
)

at the optimal value ofα. Figures5.1-(iii) and (iv) clearly
show the importance of including the parameterα in the analysis, and specifically, a poor
choice ofα can lead to unsatisfactory results (the ratioγ is small and the normalised residual
‖rnorm‖ is large). It is also noted that the default value (α = 1) may lead to poor results, as
shown in Figure4.4 in [24].

Figure5.2shows the normalised singular values of the Sylvester resultant matrix of the
theoretically exact polynomialŝf(y) andĝ(y), the given inexact polynomialsf(y) andg(y),
and the corrected polynomials̃f(y) and g̃(y) for α = 102.8, which is the optimal value of
α. All the polynomials are scaled by the geometric mean of their coefficients. It is seen from
Figure5.2-(i) thatS(f̂ , ĝ) is of full rank, which is incorrect becausêf andĝ are not coprime,
and Figure5.2-(ii) shows that the addition of noise affects its small singular values more than
its large singular values. The results forS(f̃ , g̃), which are shown in Figure5.2-(iii), are
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FIGURE 5.2. The normalised singular values, on a logarithmic scale, of the Sylvester resultant matrix for (i)
the theoretically exact polynomialŝf(y) andĝ(y), ♦; (ii) the given inexact polynomialsf(y) andg(y), �; (iii) the
corrected polynomials̃f(y) andg̃(y) for α = 102.8, ×. All the polynomials are normalised by the geometric mean
of their coefficients.

significantly better because its (numerical) rank is40, which is the correct value. Since the
perturbations that are used for the formation of this matrixare, by construction, structured,
and its rank is equal to40, this matrix is a structured low rank approximation ofS(f, αg),
for α = 102.8, that can be used to compute an approximate GCD off(y) andg(y).

It is seen from Figures5.1-(iii) and (iv) that there are many values ofα > 101.72 such
that the ratioγ is large and the normalised residual‖rnorm‖ is sufficiently small. There exist
therefore many structured low rank approximations ofS(f, αg) that satisfy tight bounds on
‖rnorm‖, which is an error bound for the satisfaction of (3.2), and also satisfy tight bounds on
the ratioγ, which is a measure of the numerical rank ofS(f̃ , g̃). Each of these approxima-
tions yields a different approximate GCD, and additional constraints can be imposed on the
optimisation algorithm in order to select a particular structured low rank approximation of
S(f, αg), and thus a particular approximate GCD.

This example only considers one value of the signal-to-noise ratioµ and one subresul-
tant matrix. The effects of varying one or both of these parameters is considered in Sec-
tion 4 in [24]. For example, if the upper bounds of‖zf‖ and‖zg‖ /α are too small because
µ is large, then it may not be possible to compute a structured low rank approximation of
a Sylvester resultant matrix whose perturbationszi are within specified bounds.

The computational results in this example, as shown in Figures5.1 and5.2, are typical
of those obtained from the large number of computational experiments that were performed
on different pairs of Bernstein basis polynomials, all of which were of high degree and had
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a large number of multiple roots. Furthermore, the results in Figures5.1and5.2for Bernstein
basis polynomials are similar to the results in [24] for power basis polynomials.

The integerk is the degree of the common divisor, and this is set by the user. For given
error tolerances and signal-to-noise ratioµ, the degree of the approximate GCD is defined
by the largest value ofk for which the LSE problem has a solution, but it cannot be guar-
anteed that there exists an approximate GCD of specified degree for given error tolerances
and signal-to-noise ratioµ. The absence of an approximate GCD that satisfies these criteria
manifests itself by the normalised residual‖rnorm‖ being significantly greater than machine
precision(10−16), that is, the equality constraintCω = q is not satisfied, and the numerical
rank of the Sylvester resultant matrixS(f̃ , g̃) is not defined. In this case, it may be necessary
to reduce the value of the integerk in order to compute an approximate GCD. Finally, Fig-
ures5.1-(iii) and 5.1-(iv) provide the necessary certification of the computed result because
if ‖rnorm‖ ≈ 10−16, then the equality constraint is satisfied, and Figure5.1-(iv) shows that
S(f̃ , g̃) is singular at the solution, in which casẽf(y) andg̃(y) have a non-constant GCD.

An approximate GCD of the inexact polynomialsf(y) andg(y) can be computed from
the corrected polynomials̃f(y) andg̃(y). The simplest method involves anLU or QR fac-
torisation of the Sylvester resultant matrixS(f̃ , g̃), in which case the coefficients of the GCD
are contained in the last non-zero row of the upper triangular matricesU andR. This method
does not involve the coprime factors of̃f(y) and g̃(y), which must be compared with the
method in [28], which involves the solution of a non-linear least squaresequation for the
GCD and the coprime factors.

6. Future work. The example in Section5 shows that the method of STLN allows
a structured low rank approximation of a Sylvester resultant matrix, and an approximate
GCD of two polynomials, to be computed. Although this example, and other examples on
high degree polynomials with multiple roots that were obtained but are not included, show
that the method of STLN is effective, there exist several issues that must be addressed in order
to improve its viability:

• This paper has shown the importance of including the scalingparameterα, but a cri-
terion and algorithm for the computation of its optimal value were not discussed.
Figures5.1-(iii) and 5.1-(iv) are highly oscillatory, and thus a criterion that leads to
a non-linear equation for the calculation of the optimal value ofα, and for which an
initial estimate is required, may not converge to the optimal, or a satisfactory, solu-
tion. A possible solution to this problem is the reformulation of the LSE problem,
such that instead of minimising‖Hz‖

2, the revised objective function

(n − k + 1)2
m
∑

i=0

(

zi

ai

(

m
i

)

)2

+ (m − k + 1)2
n
∑

i=0

(

zm+1+i

bi

(

n
i

)

)2

is minimised. This objective function, which is equivalentto the minimisation of the
backward error, may be particularly important for polynomials whose coefficients
differ by several orders of magnitude.

• The determination of the degree of the GCD, that is, the orderof the subresultant
matrix, is an important part of the application of the methodof STLN to the com-
putation of an approximate GCD of two polynomials. One method involves the
application of a threshold to the small singular values, where the value of the thresh-
old is a function of the noise [28]. The noise level may not be known, or it may only
be known approximately, which raises disadvantages about these threshold depen-
dent measures. A potential solution to this problem that does not require knowledge
of the noise level is the use of minimum description length, which is an information
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theoretic measure for the estimation of the rank of a matrix [26].

7. Summary. This paper has considered the use of the method of STLN for thecon-
struction of structured low rank approximations of the Sylvester resultant matrix in order to
compute approximate GCDs of two inexact polynomials. It hasbeen shown that the method is
effective in computing these structured approximations, but that it is necessary to include the
parameterα in the optimisation, because failure to do so could lead to unsatisfactory results.
This parameter arises because the coefficients off(y) andg(y) in S(f, g) are decoupled, with
the consequence that one polynomial can be scaled relative to the other polynomial.

The important issue of the development of fast algorithms that exploit the structures of
the matrices has not been addressed because this paper has only considered the feasibility of
the method of STLN, with the new contributions stated in Section 1, for the computation of
an approximate GCD of two polynomials. The very good computational results in this paper
and [24] show that the development of these fast algorithms must be considered in order to
enhance the practical viability of the method.
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