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A RANK-ONE UPDATING APPROACH FOR SOLVING SYSTEMS OF LINEAR
EQUATIONS IN THE LEAST SQUARES SENSE

�
A. MOHSEN

�
AND J. STOER �

Abstract. The solution of the linear system �����	� with an 
��� -matrix � of maximal rank ��� ����������
�����
is considered. The method generates a sequence of ���
 -matrices  �! and vectors �"! so that the �� #! are positive
semidefinite, the  ! approximate the pseudoinverse of � and � ! approximate the least squares solution of �$�%�&� .
The method is of the type of Broyden’s rank-one updates and yields the pseudoinverse in � steps.
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1. Introduction. We consider the problem of solving a rectangular system of linear
equations '%(*),+ in the least squares sense. Note that ( solves the associated normal equa-
tions '.-$'%(&)/'.-�+10
Here we suppose that the matrix ',24365�798 has maximal rank :<;=)/>@?BA�CEDGFIH�J . In the caseDK),H this amounts to solving a nonsingular system '%(L)M+ with a perhaps nonsymmetric
matrix ' by means of solving ' - '�(	)/' - + . When ' is symmetric positive definite (s.p.d.),
the classical conjugate gradient method ( NPO ) of Hestenes and Stiefel [13] belongs to the most
powerful iterative methods. For solving general rectangular systems, a number of NPO -type
methods have been developed, see for instance [23]. In general solving such systems is more
difficult than in the case of s.p.d. ' . In this paper, we use rank-one updates to find approx-
imations of the pseudoinverse of ' , which, for instance, may be used as preconditioners for
solving such systems with multiple right hand sides.

The use of a rank-one update to solve square systems with 'Q2R3 8S7�8 was studied by
Eirola and Nevanlinna [8]. They invoked a conjugate transposed secant condition without
line search. They proved that their algorithm terminates after at most H iteration steps, and ifH steps are needed, then '�T�U is obtained.

The problem was recently considered by Ichim [14] and by Mohsen and Stoer [17].
In [17], starting from an approximation VXW for the pseudoinverse '.Y , or from ' - when such
an approximation is not available, their method uses rank-2 updates to generate a sequence
of HXZ6D -matrices VX[ approximating '.Y . Two rank-2 updates were proposed. One is related
to the \^]6_ update and the other to the `�]6a�b update. Numerical results showed that both
methods of [17], when used for the case Dc)dH , give a better accuracy than the other rank-one
update methods.

On the other hand, rank-one updating has attractive features in terms of computational
requirements (lower number of operations, less storage). In this paper, rank-one updates
(of Broyden’s type) for matrices V^[ are computed so that, in rather general situations, the
sequence VX[ terminates with the pseudoinverse in no more than : steps. The properties ofe
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the algorithm are established. For square systems, Df)dH , also the new method is compared
with the methods gha6i , gha�b and a�jk3hl�b , which try to solve '%(&)d+ directly.

An alternative algorithm utilizing the s.p.d. matrices \m[n;=)/'.V@[ is proposed. It has the
advantage that it can monitor the accuracy as \ [^oqp 5 . However, we then have to update
two matrices (but note that the \ [ are symmetric).

2. Rank-one updating. We consider the solution of the linear system'�(&)r+(2.1)

in the least squares sense: s( “solves” (2.1) if tu+wvG'^s(�t�)d>@?�Ayx4tz+wvG'�({t , that is if ' - C|+�v'Xs(}Jh)�~ . We assume that '�2�365�7�8 has maximal rank, ����'�)�:�;�)�>@?BA�CEDGFIH�J . Here
and in what follows, t�({th;�)�CE($FI(�J�U���� is the Euclidean norm and C�(�F���J�;�)d( - � the standard
scalar product in 3 5 . The vector space spanned by the vectors �}�w2*3 5 , �w)�� , 2, . . . , � , is
denoted by �B� � U F�� � Fu0u0z0�FI�}[��B��0

We note already at this point that all results of this paper can be extended to complex
linear systems with a complex matrix '�2<g 5�7�8 . One only has to define the inner product
in gh5 by C�(�FI�9J#;=)/(S���S0
Also the operator - then has to be replaced by � and the word “symmetric” by “Hermitian”.

We call an H^Z�D -matrix V�' -related if '%V is symmetric positive semidefinite (s.p.s.d.)
and ( - '%V4(k)�~ implies that ( - 'K)�~ and V4(�)�~ . Clearly, V�;=) ' - is ' -related,
the pseudoinverse '.Y (in the Moore Penrose sense) is ' -related (this can be shown using
the singular value decomposition of ' and 'hY ); if ' is s.p.d. then V¡) p is ' -related. It
is easily verified that any matrix V of the form V¢)c£h' - , where £�2¤3 8¥7�8 is s.p.d., is' -related.

This concept will be central since our algorithms aim to generate ' -related matricesV [ which approximate '�Y . It also derives its interest from the special case when ' is a
nonsingular, perhaps nonsymmetric, square matrix. It is easily verified that a matrix V is' -related if and only if '%V is symmetric positive definite. This means that V can be used as
a right preconditioner to solve '�(¦)�+ by means of solving the equivalent positive definite
system '%V4�4)�+ , (<)�V4� , using the NPO -algorithm. Then the preconditioner V will be the
better the smaller the condition number of '%V is. So the algorithms of this paper to find ' -
related matrices V^[ with good upper and lower bounds on the nonzero eigenvalues of '.V�[
can be viewed as algorithms for computing good preconditioners V�[ in the case of a full-rank' .

The following proposition gives another useful characterization of ' -related matrices:
PROPOSITION 2.1. Let _ be any unitary D Z&D -matrix satisfying_6'�) §�¨' ~�© F

where
¨' is a :<Z�H -matrix of rank :ª)�>@?BA�CEDGFIH�J�)�����' . Define for an HLZ	D - matrix V

the HGZ	: -matrix
¨V and

¨£ by � ¨V ¨£.��;=)dVª_ - 0
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Then V is ' -related if and only if the following holds¨£�)d~ and
¨' ¨V is s.p.d.,

and then _6'.Vª_ - ) § ¨' ¨V ~~ ~ © 0
Proof. 1. Suppose that V is ' -related. Then the matrix_6'.Vª_ - ) § ¨' ¨V ¨' ¨£~ ~ ©

is s.p.s.d. . Hence
¨' ¨£�)d~ and

¨' ¨V is s.p.s.d.
Suppose

¨£¬«)c~ . Then there is a vector � � with
¨£�� � «)c~ . Define (�;=)c_ - � , where� - ) � � -U � -� � , � U ;�)d~ . Then( - '%V4(�)d� - _6'.Vª_ - �X) � ~¦� -� � § ¨' ¨V ~~ ~ © § ~� � © F

but V4(�)/V*_ - �@)f ¨V ¨£¯® § ~� � © «)�~9F
contradicting the ' -relatedness of V . Hence

¨£�)�~ . Now suppose that
¨' ¨V is only positive

semidefinite but not positive definite. Then there is a vector � U «)�~ such that
¨' ¨Vª� U )/~ . But

then � -U ¨'�«)d~ , because
¨' has full row rank, and� � -U ~1� § ¨' ¨V ~~ ~ ©4° � U~²± )d~y0

Hence the corresponding (*;�)d_ - ° � U~n±
satisfies (¥-$'%V4(	) � ��-U ~³� §�¨' ¨V ~~ ~¦©	° � U~ ± )�~9F
but ( - '�) � � -U ~1� § ¨' ¨V ~~ ~´© «)d~yF
again contradicting the ' -relatedness of V .

2. Conversely, suppose that _ , ' and V satisfy the conditions of the proposition and
assume ( - '%V4(�)�~ . Then with � - ) � � -U F9� -� ��;=)/( - _ - ,( - '%V4(�) � � -U � -� � § ¨' ¨V ~~ ~ © § � U� � © )/~9F
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so that � U )d~ . But then ( - '�)/� - _6'�) � ~¦� -� ��µ ¨' ~·¶ )d~
and likewise Vª(�)dVª_6-��@) � ¨V¸~1� § ~� � © )d~90
Hence V is ' -related.

In the case :�)KD¸¹fH , we can choose _º;�) p and the proposition reduces to the
following corollary, which has a simple direct proof.

COROLLARY 2.2. If the matrix ' has full row rank, then V is ' -related iff '.V is a
symmetric positive definite matrix.

Proof. If '%V is s.p.d., then ( - '.V4(¦)�~ gives (´)�~ . Conversely, if V is ' -related,
then ( - '%V4(´)�~ implies ' - (¦)�~ and, therefore, (»)�~ since ' - has full column rank.
Hence the s.p.s.d. matrix '.V is s.p.d..

We noted above that any matrix V of the form V )�£h' - , where £�2&3 8¥7�8 is s.p.d., is' -related. The converse is also true:
PROPOSITION 2.3. A matrix V¼2d3 8¥795 is ' -related iff it has the form V½)Q£h' - ,

where £,243 8S7�8 is s.p.d..
Proof. We prove the result only for the most important case of a full column rank matrix' , D ¾¦Hª)d: .

Let V be ' -related. Since ( - '%V4(M)¿~ implies ' - (M)¿~ and Vª(M)¯~ , ' - (M)À~ is
equivalent to V4(¤)Á~ , that is V and ' - have the form VÂ)Q£h' - , ' - )ÁÃ�V for some
matrices £�FyÃ�2*3 8¥798 . As ' - has full column rank HG)k: , so has V . This implies that £
is nonsingular and ÃÁ)�£@T}U . Since '%VÄ)M'h£h' - is s.p.s.d. and '�£h' - )�C�'�£6' - J - )'�£ - ' - , and therefore by the nonsingularity of '%' -' - 'h£h' - '�)�' - '�£ - ' - '�)}ÅÆ£�)r£ - F
showing that £ is symmetric, nonsingular and positive semidefinite, and therefore a s.p.d.
matrix.

The methods for solving (2.1) will be iterative. The new iterate (}[ Y$U is related to the
previous iterate by (S[ Y$U )/(S[�Ç¦È�[PÉ�[6)¤(S[�Ç´�Ê[ËF
where the search direction É}[ is determined by the residual Ì1[m)�+�v´'%(S[ via an ' -relatedHGZ�D matrix VX[ of rank : by ÉS[6)�VX[�Ì�[�0
We will assume É�[m«)�~ , because otherwise'wÉS[6)d'.VX[ÍÌ�[6)�~6Å¢C�'%VX[³Ì�[ËF�Ì�[³Jw)d~9F
so that, by the ' -relatedness of V^[ , ' - Ì�[L)c~ , that is, (�[ is a (least-squares) solution of
(2.1).
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We also note that É [ «)�~ implies 'wÉ [ «)d~ , because otherwise, again by ' -relatedness,~�)MC|'ÎÉ [ FIÌ [ JÎ)MC|'%V [ Ì [ FIÌ [ JÎÅ¿V [ Ì [ )<É [ )�~90
Hence the scalar products C�'wÉ�[ËF�Ì�[³J , C|'ÎÉS[�F�'ÎÉ�[³J will be positive.

Now, the stepsize ÈÏ[ is chosen to minimize the Euclidean norm t�Ì1[ Y$U t . Thus,Ì�[ Y�U )/ÌÍ[�vGÈ{[1'wÉS[6)¤ÌÍ[�vGÐ1[ËF
where È�[6),C|'ÎÉ�[�FIÌÍ[³J�Ñ9C�'wÉS[ËF�'ÎÉS[1J�Ò�~90
Hence È{[ is well defined andC�Ì [ Y$U F�Ð [ JÎ)�~�)MC�Ì [ Y�U F�'%V [ Ì [ J�FCEÌ�[ Y$U F�Ì�[ Y�U JÎ)�CEÌÍ[ËFIÌÍ[³J{v/ÓÔC�Ì�[9F�'ÎÉ�[³JuÓ � Ñ9C�'wÉS[ËF�'ÎÉS["JÕ CEÌÍ[ËFIÌÍ[³J�0

We update V [ using a rank-one correctionV [ Y$U )�V [ Ç´� [ÍÖ -[ F � [ 2&3 8 F Ö"[ 2	3 5 0
Upon invoking the secant condition VX[ Y�U Ð1[h)/�Ê[�F
we get the update formula of Broyden type [3],VX[ Y$U )�VX[·Ç�CE�×[�vGVX[1Ð1[1J ÖË-[ Ñ�C Ö [�F�Ð1[1J(2.2) )�VX[·Ç´�}[ Ö -[ Ñ�C Ö [ËF�Ð1[³J�F �}[�;=)d�Ê[.vGVX[1Ð1[×F
provided that C Ö [�F�Ð1[1J6«)�~ . The updates (2.2) are invariant with respect to a scaling of Ö [ . It
can be shown (see [10]) that for Dc)/H the matrix V^[ Y$U is nonsingular iff VX[ is nonsingular
and C Ö [�F�V T}U[ �×[1J�«),~ . If DK)�H and ' is s.p.d., then it is usually recommended to start the
method with V²W4;=) p and to use Ö [L;=)��}[	)��Ê[�v�VX[1Ð1[ , which results in the symmetric
rank-one method (SRK1) of Broyden [21] and leads to symmetric matrices V^[ . However,
it is known that SRK1 may not preserve the positive definitness of the updates V�[ . This
stimulated the work to overcome this difficulty [22], [16], [24], [15].

When ' is nonsymmetric, the good Broyden (GB) updates result from the choice Ö [²;=)V -[ � [ , while the bad Broyden (BB) updates take Ö×[ ;�)�Ð [ . For È [ ;=)�� and solving linear
systems, Broyden [4] proved the local 3 -superlinear convergence of GB (that is, the errorsØ [ ;=)Ät�( [ v¤( � tG¹cÙ [ are bounded by a superlinearly convergent sequence Ù [LÚ ~ ). In
Moré and Trangenstein [18], global Û -superlinear convergence (i.e. ÜB?B> [�Ý�Þ Ø [ Y$U Ñ Ø [ )~ ) for linear systems is achieved using a modified form of Broyden’s method. For 'Â23 8¥7�8 , Gay [10] proved that the solution using update (2.2) is found in at most ß³H steps. The
generation of à Ö [Êá as a set of orthogonal vectors was considered by Gay and Schnabel [11].
They proved termination of the method after at most H iterations.

The application of Broyden updates to rectangular systems was first considered by Ger-
ber and Luk [12]. The use of the Broyden updates (2.2) for solving non-Hermitian square
systems was considered by Deuflhard et al. [7]. For both GB and BB, they introduced an er-
ror matrix and showed the reduction of its Euclidean norm. For GB they provided a condition
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on the choice of V W ensuring that all V [ remain nonsingular. They also discussed the choiceÖ"[ ;=)cV -[ V [ Ð [ , But in this case, no natural measure for the quality of V [ was available,
which makes the method not competitive with GB and BB. For GB and BB, they showed the
importance of using an appropriate line search to speed up the convergence.

In this paper, we start with an ' -related matrix VXW and wish to make sure that all V^[
remain ' -related. Hence the recursion (2.2) should at least preserve the symmetry of the'%VX[ . This is ensured iff Ö [6)d'%��[×F
or equivalently�}[h)/�Ê[.v<VX[1Ð1[�)�C p vGVX[1'�Jâ�Ê[6)/VX[�C|È�[1Ì�[�v<ÐÍ["JÎ)dVX[�ãI[ËF
(2.3) Ö"[ )d'nCE� [ v<V [ Ð [ JÎ)MC p vG'.V [ JäÐ [ )d'.V [ ã [ F
where ã�[ is the vector ã�[n;�)�È{[ÍÌ�[�v<Ð1[ .

However, the scheme (2.2), (2.3) may break down when C Ö×[ F�Ð [ Jh)�~ and, in addition,
it may not ensure that '.V [ Y$U is again ' -related. We will see that both difficulties can be
overcome.

3. Ensuring positive definiteness and ' -relatedness. For simplicity, we drop the iter-
ation index � and replace �hÇR� by a star

�
. We assume that V is ' -related and É�)�V4Ìm«)d~ ,

so that C|'%V4Ì1F�Ì1J�ÒR~ and C�'wÉ�F�'wÉSJ#Ò¤~ . Following Kleinmichel [16] and Spedicato [24], we
scale the matrix V by a scaling factor åªÒ¤~ before updating. This leads toV � )/å}V�Ç´� Ö - Ñ�C Ö F�ÐËJ�F
where ��)d��vLå}VªÐ�)/V´C|È�ÌhvLå�ÐËJÏ)dVªã , Ö )�'��&)d'%V4ã and ãÎ)�È�Ì�v*å}Ð . Therefore,V � )/å�V�Ç¦V4ã�C�'.V4ãIJ - Ñ�C�'.V4ã�F�ÐËJ�F(3.1) '.V � )/å�'.V�Ç¦'%Vªã�C�'%VªãIJ - Ñ�C�'.V4ã�F�ÐËJ�0(3.2)

Then, introducing the abbreviationsæ U ;=)�C�'%VªÌ1FIÌ³J�F æ � ;�)�C�'.VªÐ¥F�ÐËJ�F æ � ;=)MC|'%V4Ì � FIÌ � J�F
we find æ U Ò�~yF æ � ¾¤~9F æ � ¾ æ U Ò¤~9FÈG) C�'ÎÉ$FIÌ³JC|'ÎÉ�F�'ÎÉ�J ) C�'.V4Ì1FIÌ³JC|'%V4Ì1F�'%V4Ì³J Ò¤~9F
and an easy calculation, using C�Ì � F�ÐËJÏ)d~ , Ð�)dÌ.vGÌ � , showsæ � ) æ U Ç æ �
and the following formula for the denominator in (3.2),C Ö F�ÐËJÎ),C�'.V4ã�F�ÐËJÎ)�C�È�'%V4ÌhvLå�'.VªÐyF�Ð×J{)�È æ U v*å æ � )MC�ÈLv*å�J æ U v*å æ � 0(3.3)
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Since V is ' -related, Proposition 2.1 can be applied. Hence, there exist a unitary D�Z%D -
matrix _ and :GZ�H -matrices

¨' ,
¨V - , such that_6'�)Äµ ¨' ~�¶ FçVª_ - ) � ¨Vè~1�éFç_6'%Vª_ - ) § ¨' ¨V ~~ ~¦©

. ¨' ¨V is symmetric positive definite.

Then (3.1), (3.2) preserve the block structure of V*_ - and _6'%Vª_ - . Replacing ã by¨ãÏ) § ¨ã U¨ã � © ;�)�_hã�F ¨ã U 2&3hêSF
we find � ¨V � ~³��;�)dV � _ - )¤å � ¨Vè~1�ËÇ ¨V ¨ã U ¨ã - U � ¨' ¨Vè~³�C|'%V4ã�F�Ð×J F§ ¨' ¨V � ~~ ~´© ;�)d_6'%V � _ - )/å § ¨' ¨V ~~ ~¦© Ç °�ëì ë�W ± ¨ã U ¨ã - U � ¨' ¨Ví~³�C�'.V4ã�F�ÐËJ 0
Hence, by Proposition 2.1, '%V � is ' -related if and only if¨' ¨V � )/å ¨' ¨VÁÇ ¨' ¨V ¨ã U C ¨' ¨V ¨ã U J -C|'%V4ã�F�Ð×J(3.4)

is positive definite.
Since

¨' ¨V is s.p.d. and å*Ò�~ , Cîå ¨' ¨V*J�UI��� is well defined and
¨' ¨V � satisfiesCEå ¨' ¨V*J T�UI��� C ¨' ¨V � JuCîå ¨' ¨V*J T}U���� ) p Ç C ¨' ¨V*J UI��� ¨ã U ¨ã - U C ¨' ¨V*J UI���å{C|'%V4ã�F�Ð×J )n;Ê£�0(3.5)

The matrix £ has the eigenvalues 1 (with multiplicity :<v�� ) and, with multiplicity 1, the
eigenvalue ï Cîå�J#;=),��Ç �å C ¨' ¨V ¨ã U F ¨ã U JC|'%V4ã�F�Ð×J 0
But as is easily seen, C ¨' ¨V ¨ã U F ¨ã U JÎ)�C�'.V4ã�FIãIJ , so that by (3.3),ï CEå}J�) �å È#C�È*v*å�J æ UÈ æ U vLå æ � 0(3.6)

Hence, V � will be ' -related, iff åªÒ¤~ satisfies È æ U vLå æ � «)/~ andÈ#C�ÈLv*å�J æ UÈ æ U v*å æ � ÒR~yF
that is iff ~ Õ å Õ È æ Uæ � )�È æ Uæ U Ç æ�ð or å*ÒRÈw0(3.7)
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In view of the remark before Corollary 4.5 (see below), the choice åR) � seems to be
favorable. By (3.7), this choice secures that V � is ' -related unless ÈwF æ U , æ � satisfy�h¹¤È»¹���Ç æ �æ U 0(3.8)

Next we derive bounds for the condition number of
¨' ¨V � and follow the reasoning of

Oren and Spedicato [20]. Let
¨\c;=) ¨' ¨V and

¨\ � ;�) ¨\ ¨V � . Then by (3.4),¨\ � )/å ¨\MÇ ¨\ ¨ã U C ¨\ ¨ã U J - Ñ9C�'%Vªã�F�ÐËJ�F
where we assume that

¨\ is s.p.d. and å satisfies (3.7), so that also
¨\ � is s.p.d. Then the

condition number ñ�C ¨\mJ with respect to the Euclidean norm is given byñ�C ¨\mJÎ)ÁòyóÏô�õ C ¨\mJò óÏö ÷ C ¨\mJ ) >@ø³ù xËúû W ( - ¨\^(�ÑÍ( - (>@?BA¥x�úû W}( - ¨\X(�Ñ1( - ( 0
Then by (3.5) for any (<«)�~ ,( - ¨\ � (( - ( ) ( - CEå ¨\�J�U����Í£@Cîå ¨\mJ�UI���z(( - å ¨\X( ( - å ¨\@(( - (¹ ò óÏô�õ Cé£6J×å ò óÏô�õ C ¨\mJ�F
and, similarly, ( - ¨\ � (( - ( ¾ ò óÏö ÷ Cé£6J×å ò óÏö ÷ C ¨\�J�0
Now, the eigenvalues of £ are 1 and

ï CEå}J is given by (3.6). Hence,ò óÏô�õ C ¨\ � J#¹R>Xø1ù}Cä�"F ï Cîå�JIJ×å ò óÏô�õ C ¨\�J�Fò óÏö ÷ C ¨\ � J#¾R>@?�A�CI�"F ï CEå}J�J×å ò óÏö ÷ C ¨\�J�F
so that, finally, ñ$C ¨\ � J·¹/ü�Cîå�JIñ$C ¨\&J�F
where ü�CEå}J#;=) >Xø³ù�CI�"F ï CEå}J�J>@?�A$Cä�"F ï Cîå�JIJ 0
Note that

¨\ � depends on å ,
¨\ � ) ¨\ � Cîå�J . Unfortunately, the upper bound for ñ$C ¨\ � J just

proved is presumably too crude; in particular it does not allow us to conclude that ñ�C ¨\ � J Õñ$C ¨\mJ for certain values of å . Nevertheless, one can try to minimize the upper bound by
minimizing ü�Cîå�J with respect to å on the set ý of all å satisfying (3.6). The calculation is
tedious though elementary. With the help of MATHEMATICA one finds for the case

æ � Ò¤~ ,
that is

æ � Ò æ U , that ü has exactly two local minima on ý , namelyå Y ;=)dÈ�þI��Ç�ÿ æ � Ñ æ ��� Ò�È�F(3.9) å T ;=)dÈ þ ��v¤ÿ æ � Ñ æ � � Õ È æ Uæ � 0
Both minima are also global minima, and they satisfyü�Cîå Y Jw)�ü�CEå T Jw) æ U ÿ æ � Ñ æ � Ç æ � þ���Ç ÿ æ � Ñ æ � �æ U ÿ æ � Ñ æ � v æ � þ���v ÿ æ � Ñ æ � � Òr�Ê0
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4. The algorithm and its main properties. Now, let V W be any ' -related starting ma-
trix, and ( W a starting vector. Then the algorithm for solving '%(d) + in the least squares
sense and computing a sequence of ' -related matrices Vm[ is given by:

Algorithm: Let ' be a D¡Z»H -matrix of maximal rank, +<2�3 5 , V²W be ' -related, and(yW�2	3 8 a given vector.
For �X)�~ , � , . . .

1. Compute the vectors Ì1[�)d+�vG'%(S[ , ÉS[n;=)dVX[ÍÌÍ[ .
If É [ )�~ then stop.

2. Otherwise, compute È [ ;�)�C�'wÉ [ F�Ì [ J�Ñ�C|'ÎÉ [ F�'ÎÉ [ J�F( [ Y$U ;�)d( [ Ç¦È [ É [ F � [ ;=)/( [ Y$U vG( [ FÌ [ Y$U ;�)dÌ [ v<'�� [ FçÐ [ ;=)/Ì [ vLÌ [ Y$U 0
3. Define æ U ;=),C�'.V [ Ì [ FIÌ [ Jw),C|'ÎÉ [ FIÌ [ J�F æ � ;�)�C�'.V [ Ì [ Y$U F�Ì [ Y$U J�0
4. Set å [ ;�)M� if (3.8) does not hold.

Otherwise compute any å9[�Ò¤~ satisfying (3.7), say by using (3.9),å [ ;�)�� å Y F if
æ � Ò¤~9FÈ [ CI�#Ç����	��J�F if
æ � )�~9F

where eps is the relative machine precision.
Compute � [ ;=)/� [ vLå [ V [ Ð [ , Ö"[ ;�)�'�� [ andV [ Y$U ;=)Rå [ V [ Ç´� [�Ö -[ Ñ9C Ö"[ F�Ð [ J�0
Set ��;�)r�6Ç/� and goto � .

We have already seen that step 2 is well-defined if É}[ª«),~ , because then C�'%ÌÍ[�F�Ì�[³J�Ò�~
and 'ÎÉ�[^«)d~ , if VX[ is ' -related. Moreover, É}[h)�~ implies ' - Ì�[6)�' - C|+{vª'%(S[³Jw)d~ , i.e.,(S[ is a least-squares solution of (2.1), and the choice of åy[ in step 2 secures also that V^[ Y$U
is ' -related. Hence, the algorithm is well-defined and generates only ' -related matricesVX[ . This already proves part of the main theoretical properties of the algorithm stated in the
following theorem:

THEOREM 4.1. Let ' be real D¯Z4H -matrix of maximal rank :R;�)M>@?�A�C�DLF�H�J , VXW an' -related real H@ZhD -matrix and (SW�2	3 8 . Then the algorithm is well-defined and stops after
at most : steps: There is a smallest index 
�¹R: with É���)d~ , and then the following holds:tu'�(	��v»+³t�)/>@?BAx t�'%(^v<+"t1F
and in particular '�(��)r+ if D ¹RH . Moreover

1. V�� is ' -related for ~@¹��X¹�
 .
2. V [ Ð � )¤å ��� [ � � for ~@¹�� Õ ��¹�
 , whereå���� [n;=) � åË� Y$U åË� Y�������� å�[ T�U for � Õ �nv��ÊF� for ��)r�nv��Ê0
3. CEÌÍ[ËF�ÐÍ�éJÎ)d~ for ~²¹�� Õ ��¹�
 .
4. C�Ð1[ËF�Ð���JÎ)d~ for ��«)r��¹�
 .



ETNA
Kent State University 
etna@mcs.kent.edu

106 A. MOHSEN AND J. STOER

5. Ð [ «)/~ for ~@¹R� Õ 
 .
Proof. Denote by C|_{[ÊJ the following properties:
1) V � is ' -related for ~@¹��X¹/� .
2) V � ÐÍ��)¤å���� � �Ê� for ~n¹R� Õ �X¹/� .
3) CEÌ � F�ÐÍ��JÎ)d~ for ~²¹�� Õ �^¹¤� .
4) C�Ð � F�Ð���JÎ)d~ for ~²¹R� Õ � Õ � .
5) Ð � «)d~ for ~@¹�� Õ � .

By the remarks preceding the theorem, the algorithm is well-defined as long as É�[L«)�~ and
the matrices V^[ are ' -related. C|_{[³J , 4) and 5) imply that the � vectors Ð1� , �Ï)d~ , 1, . . . , �#v4� ,
are linearly independent and, since Ð � )Á'�� � 2��*C|'.J and dim �*C�'�Jn)�: , property C|_ [ J
cannot be true for �LÒ�: . Therefore, the theorem is proved, if C|_ W J holds and the following
implication is shown: C�_{["J�F¥É�[X«)�~»)�Å C�_{[ Y$U J�0

1) C�_{[ Y$U J , 1) follows from the choice of åy[ that VX[ Y�U is well-defined and ' -related if isVX[ .
2) To prove C|_{[ Y$U J , 2) we first note thatV [ Y$U Ð [ )d� [

by the definition of V^[ . In addition for � Õ � , C�_Ï["J and the definition of å9��� [ implyVX[ Y$U ÐÍ�$)Rå9[1VX[1ÐÍ��)¤å9[�å���� [1�"��)¤å���� [ Y$U �"�äF
since C�Ð [ F�Ð � Jw)d~ andC�'%VX["ÐÍ[×F�ÐÍ�|JÎ)�C�Ð1[ËF�'.VX[1ÐÍ�|JÎ)�C�Ð1[ËF�'�åË��� [Í�"��Jw),C|Ð1[ËFäå���� [³Ð���Jw)/~y0
This proves C�_Ï[ Y$U J , 2).

3) Since CEÌÍ[ Y$U F�Ð1[1JÎ)�~ , and for � Õ � ,C�Ì�[ Y�U F�ÐÍ�|JÎ)�CEÌz� Y$U Ç [�� û � Y$U Ð � F�ÐÍ��JÎ)�~9F
because of C�_Ï["J , 3), 4). This proves C�_Ï[ Y$U J , 3).

4) By C|_{[ Y$U J , 3) we have for � Õ �C|Ð���F�Ð1[1JÎ)�C�ÐÍ�äF�Ì�[�vGÌ�[ Y�U Jw)d~90
Hence C|_ [ Y$U J , 4) holds.

It was already noted that É [ «)d~ implies Ð [ «)d~ . Hence C|_ [ Y$U , 5) holds.
This completes the proof of the theorem.

REMARK 4.2. In the case D¿¾dHG)�: , the algorithm finds the solution s(<;�)�ø"���X>@?BA xt�'%(mv´+³t , which is unique. In the case D�)�: Õ H , the algorithm finds only some solutions( of the many solutions of '�(	)�+ , usually not the interesting particular solution of smallest
Euclidean norm. This is seen from simple examples, when for instance the algorithm is started
with a solution (¥W of '%(&)r+ that is different from the least norm solution: the algorithm then
stops immediately with s(4;=)/(SW , irrespective of the choice of V@W .

The least squares, minimal norm solution ( � of '�(&)r+ can be computed as follows: lets + be any solution of '�(&)r+ (computed by the algorithm) and compute � � as the least squares
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solution of ' - �4) s+ again by the algorithm (but with ' replaced by ' - and + by s + ). Then( � )/' - � � is the least squares solution of '�(�)r+ with minimal norm.
We also note that the algorithm of this paper belongs to the large ABS-class of algorithms

(see Abaffy, Broyden and Spedicato [5]). As is shown in [25], also the minimal norm solution
of a '�(*),+ , '�2L3h5�7�8 , D�)�: Õ H , can be computed by invoking suitable algorithms of
the '%`²b -class twice.

COROLLARY 4.3. Under the hypotheses of Theorem 4.1, the following holds. If the
algorithm does not stop prematurely, that is if :G)r>@?BA�CEDGFIH�J is the first index with É � )k~ ,
�)/: , then '.V ê )! %\" T}U F if :4)dD ¹RH ,V ê '�)$#n\%# T�U F if :ª)dHL¹RD ,

with the matrices  �;=) � Ð�W<Ð U 0u0z0	Ð ê T�U �éF#�;=) � � W � U 0u0u0&� ê T�U �éF\�;=)'&�?Bø(�%Cîå W�� ê Fäå U � ê Fäå ê T}U � ê J�0
That is, if å9[6)k� for all � , then \�) p so that V ê is a right-inverse of ' if :ª)¤D ¹RH , and
a left-inverse if :ª)/HG¹¦D .

Proof. Part 2. of Theorem 4.1 and the definitions of \ ,  , # implyV ê  �)$#�\ªFç')#�)* �0(4.1)

The : columns Ð � 243 ê of  are linearly independent by parts 4. and 5. of Theorem 4.1
(they are even orthogonal to each other), so that by ')#�)* also the columns � � 2&3 8 of the
matrix # are linearly independent.

Hence, for :ª)dD ¹¦H ,  T}U exists and by (4.1)'%V ê  d)! �\¢Å¸'%V ê )' %\" T�U F
and for :ª)/HG¹¦D , #XT}U exists, which implies by (4.1)V ê  d)dV ê '+#�)$#�\�Å¸V ê '�)'#�\%# T}U 0

As a byproduct of the corollary we note'%V ê '�)��  �\" 6T}U�' if D ¹¦H')#�\,#@T}U if D ¾¦H FV ê '.V ê ) � V ê  %\" 6T}U if D ¹RH#�\%#XT�U�V ê if D ¾RH 0
If \�) p (i.e., å [ ),� for all � ) these formulae reduce to'%V ê 'r)/'�FíV ê '.V ê )�V ê 0
Since then, for :4)�H<¹RD , in addition, both V ê 'r) p 5 and '%V ê are symmetric, V ê must
be the Moore-Penrose pseudoinverse '�Y of ' .

REMARK 4.4. Consider the special case :»)�DK)�H of a nonsingular matrix ' . Then,'%V 8 is s.p.d. and, by the corollary, '%V 8 )- �\" 6T}U , so that the eigenvalues of '%V 8 are
just the diagonal elements of \ . Hence its condition number is ñ�C|'%V 8 J�),ñ$C�\�J . Since the
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algorithm chooses the scaling parameter å [ )�� as often as possible, '%V 8 will presumably
have a relatively small condition number even if \K«) p .

Theorem 4.1, part 3. implies a minimum property of the residuals:
COROLLARY 4.5. For � Õ 
 , the residuals satisfyt�Ì [ Y$U t·)d>@?�A.0/ tz+Îv<'�C�( W Ç [� � û W ò � É � Jut³0
Proof. By the algorithm È$�|'ÎÉS�$)dÈ���'.V@��Ì���)/ÐÍ�IF

so that Ì�[ Y$U )dÌuW�v [� � û W È$��'ÎÉS��)/ÌzW�v [� � û W ÐÍ�ä0
Hence ü�C ò W F ò U Fu0z0u0uF ò [ J#;�)�tu+�v<'�CE( W Ç [� � û W ò � É � Jut � )�t�Ì W v [� � û W ò �È�� Ð � t �
is a convex quadratic function with minimum ò �$)dÈ$� , �{)d~ , 1, . . . , � , sinceü21. / C|È�W×Fu0z0u0uF�È�["JÎ) �È�� C�Ì�[ Y$U F�Ð���JÎ)d~yF �Ï)d~yF}0u0u0zFy��F
by Theorem 4.1, part 3.

We note that the space
�B� ÐÍWÊF�Ð U Fu0z0u0zF�Ð1[z��� is closely related to the Krylov space3 [ Y$U C|'%V W FIÌ W J#;=) �B� Ì W F�'%V W Ì W Fz0u0z0�FzC|'%V W J [ Ì W �B�54R3 5

generated by the matrix '.V@W and the initial residual Ì�W :
THEOREM 4.6. Using the notation of Theorem 4.1, the following holds for ~²¹¤� Õ 
Ì�[n2 �B� ÌuW×F�'%V²W�ÌuWÊFu0u0z0uF�C�'%V²W1J [ ÌzW��B�}) 3 [ Y$U C�'.VnWÊFIÌzWÍJ�FÐÍ[�2 ��� '%V²WzÌuW×Fu0u0z0�FzC|'%V²W1J [ Y$U ÌuWz�B��)d'.V²W 3 [ Y�U C|'%V²WÊF�ÌuWÍJ�F��� Ð W F�Ð U Fz0u0z0uF�Ð [ �B��) ��� '%V W Ì W Fz0u0z0uFzC|'%V W J [ Y$U Ì W �B��F

that is Ð W , Ð U , . . . , Ð [ is an orthogonal basis of '.V W 3 [ Y$U C|'%V W FIÌ W J and&�?B>¤'%V²W 3 [ Y$U C|'%V²W×FIÌuWÍJw)d��Çd�"0
Proof. The assertions are true for �X)�~ , sinceÐ W )�'�� W )dÈ W '%V W Ì W 2 ��� '%V W Ì W ���é0

Now '%VX[1Ð1[n2 �B� '%V²WzÌzW"Fz0u0u0zFzC|'%V²WÍJ [ Y�� ÌuWz���éF ~n¹/� Õ 
IF
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For any vector �ª2	3 5'.V@[ Y$U �*2 �B� '.VX[Í�y�B��Ç �B� Ð1[z�B��Ç ��� '%VX[1Ð1[z�B�

...2 �B� '.V²Wz�¥����Ç �B� '.V²WzÌzW"Fu0z0u0zFzC�'.V²WÍJ [ Y�� ÌuWz���éF�B� Ð�WÊF�Ð U Fu0z0u0zF�Ð1[z���64 �B� '.V²WzÌzWÊFz0u0u0uFzC�'.V²WÍJ [ Y$U ÌuWz���éF&�?B> �B� '%V²WzÌzW"Fz0u0u0zFzC|'%V²WÍJ [ Y$U ÌuWu����¹R��Çd�"0
5. Comparison with other methods and numerical results. The numerical tests are

concentrated to the cases Dº)�H4Ç,� and Dº)�H for the following two reasons: The first
is that it is harder to solve least squares problems with H¦¹rD with H close to D than those
with H-7 D . The second is that in the case D )ÆH , which is equivalent to solving a
linear equation '�(/)�+ with a nonsingular and perhaps nonsymmetric matrix ' , there are
many more competing iterative methods, such as gha6i , gha�b , a�jk3hl�b than the rank-one
(“ 3 3 � ”) method of this paper and the rank-2 methods (“ 3 3 ß ”) of [17] that solve '�(<)�+
only indirectly by solving ' - '%(*)k' - + . In all examples we take Ü98(� U W t�ÌÍ[9t as measure of
the accuracy.

EXAMPLE 5.1. Here we use that the algorithm of this paper is defined also for complex
matrices ' . As in [17] we consider rectangular complex tridiagonal matrices '�)cC�:;� [ J�2g 5�7�8 that depend on two real parameters < and = and are defined by

: � [²;=)?>@@A @@B
�ÎÇ¦�;<ËF if �²)�� ,v��;=SF if �X)��.Çd� ,�C=SF if �X)��6vR� ,~9F otherwise 0 �h¹D�X¹RDLF��6¹R��¹�HÏ0

In particular, we applied 3 3 � (starting with (SW�;=)K~ and V²W¦;=)K' � ) to solve the least
squares problem with D¬)FE9� , H¤)FEÊ~ , <	)�~90B� and =¦)c� . The iteration was stopped as
soon as �G��[n;=)Mt�ÌÍ[9t"t�ÌuWËt%¹ Ø F Ø ;=),��~ T�H 03 3 � stopped after 24 iterations. Figure 5.1 (plotting Ü98(� U W ���Í[ versus � ) shows the typical
behavior observed with NPO -type methods (cf. Theorem 4.1).

At termination, 3 3 � produced only an approximation V � of the pseudoinverse of ' ,
since 3 3 � stopped already after ßJI Õ E"~�)dH iterations. When VXW�;=)�V � was then used to
solve by 3 3 � the system '%(L)M+ 1 with a new right-hand side + 1 «)M+ (but the same starting
vector (¥Wh)r~ and precision Ø )��z~9TKHuJ , 3 3 � already stopped after 9 iterations (see the plot
of Figure 5.2).

Other choices of the parameters < and = lead to least squares systems '�(/)�+ , where3 3 � (started with V²W�;�)¯' - ) did not stop prematurely: it needed H iterations and thus
terminated with a final V � very close to '.Y . Not surprisingly, 3 3 � (started with V@W�;=)/V � )
then needed only one iteration to solve the system '�(´)�+ 1 with a different right-hand side+ 1 «)�+ . .
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FIG. 5.1. No preconditioning

1 2 3 4 5 6 7 8 9
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

FIG. 5.2. With preconditioning

The test results of [17] for 3 3 ß were similar. Since 3 3 � needs only half the storage
and number of operations as 3 3 ß , 3 3 � is preferable.

EXAMPLE 5.2. This major example refers to solving square systems '�(M)À+ � , �m)�"Fyß9F}0u0z0uF with many right hand sides +�� . It illustrates the use of the final matrices V�L �9M
produced by 3 3 � when solving '�(&)r+u� as starting matrix V@W�;�)dV�L �9M of 3 3 � for solving'�(	)d+�� Y$U .

We consider the same evolution equation as in [17],��N�ÇO: � � x Ç�+ � ��P6)¤� xzx Ç´�KPQP#Ç�={CE($FI��FIãIJ�F ~@¹Rã�¹�R�Fç~²¹�($FI��¹r�ÊF
where={CE(�F���FIãIJ#;=)$S T . N � Cäv ò Ç�ßJT � JC��?�AUT}(V��?�AUT}�6ÇDTÎCW:YX�8Z�	T}(V�I?BAUT}�hÇ�+K�I?BA[T}(\XQ8]�CT}�9Jé�éF
with the initial and boundary conditions�{CE(�F���F�~ÊJ�)$��?�A[T}(\��?BAUT}�SF ~²¹�($FI��¹r�ÊF�{CE($FI��FIãIJ�)d~yF for ã�ÒR~ , C�(�F���J�2_^ � ~9Fu�u��Z � ~yFu��� .



ETNA
Kent State University 
etna@mcs.kent.edu

SOLVING LINEAR EQUATIONS BY RANK-ONE METHODS 111

Its exact solution is ��C�(�F��SF�ãIJÎ)$S T . N ��?�A[T}(\��?�AUT}��0
The space-time domain is discretized by a grid with space step `n(�)a`��r)abk)¡�1Ñ�i
and time step `nã*)dc�Ò¿~ . Let us denote the discretized solution at time level Hec by£ , and at level CEH4Ç���Jfc by Ã . Application of the Crank-Nicolson technique using central
differences to approximate the first order derivatives and the standard second order differences
to approximate the second derivatives yields the following scheme (we use the abbreviationsæ ;�)$c¥Ñ�C�ß(b¥�zJ , å*;=)�c¥Ñ�C�I]bSJ ) for the transition £ o Ã :CI�ÍÇ+I æ JIÃ¥� � Ç�Ãy� Y$U � � C�:Êåmv æ J�Ç�Ã¥� T�U � � CIvg:Êåmv æ J�Ç¦Ã¥��� � Y$U C�+�åmv æ J�ÇÇhÃ¥��� � T}U Cäv%+�åmv æ Jw))�Cä��v�I æ J�£Ï� � Ç�£Î� Y$U � � Cävg:Êå@Ç æ J�ÇR£Ï� T}U � � C�:Êå@Ç æ J�ÇR£Ï��� � Y$U Cäv%+�å²Ç æ J�ÇÇ6£Î��� � T�U C�+�å@Ç æ J�Ç �ß � ={CE�Cb�Fh�ib�FzCEH^Çd��JjcyJ�ÇO={C��;b�Fk�ib�F�HlcyJé�éF
where ß4¹,�PFh�*¹Mi�vd� . This scheme is known to be stable and of order m@C�cS�×FGb¥�zJ . Ã is
obtained form £ by solving a linear system of equations '.Ã�),g@C�£6J with a nonsymmetric
penta-diagonal matrix ' and a right hand side g@C�£6J depending linearly on £ . This linear
system may be solved directly by using an appropriate modification of Gauss elimination.
However, to demonstrate the use of our updates, we solve these equations for given £ itera-
tively starting for the first time step with V W ;�)�' - . For the next time steps, we compare the
results for the rank-two method in [17] with the rank-one method of this paper.

For i¯)nEZo (corresponding to more than 1000 unknowns at each time level) and `nã#)c»)Á~90 ~9� , :G)f�z~ , +²)�ß³~ , ò )f� the solution of the problem up to the time ã6)pomZ�`nã
requires the following numbers of iterations in order to achieve a relative residual norm Õ~90 ~"~Ê~9� :

RK1: 158 123 98 91 62
RK2: 158 123 109 87 74

These results show a comparable number of iterations for both methods. But again, the
storage and the number of operations for 3 3 � is half that required for 3 3 ß .

The next examples also refer to the solution of systems '�(&)�+ with a square nonsingularH´ZªH -matrix ' . Here we follow the ideas of Nachtigal et al. in [19], who compared three
main iterative methods for the solution of such systems. These are gha6i , a�jk3hl�b andgha�b . Examples of matrices were given for which each method outperforms the others by
a factor of size m@Chq H�J or even m@C�H�J . These examples are used to compare our algorithm
(“ 3 3 � ”) with these three methods. In all examples HR)rI×~ , except Examples 5.3 and 5.6,
where Hr)sIÊ~Ê~ . We take Ü98(� U W t�Ì�[9t as a measure of the accuracy. Note that 3 3 � solves'�(&)�+ only indirectly via the equivalent system ' - '%(&)/' - + ..

EXAMPLE 5.3. In this example all methods make only negligible progress until step H .
Here 'k;=)$&9?Bø(�%Cä�ÊFtIyFGu9Fz0u0u0�F�H � J�F
is diagonal but represents a normal matrix with troublesome eigenvalues and singular values.
The results show that both a�jk3�lnb and 3 3 � are leading.

EXAMPLE 5.4. This is an example where both gha6i and 3 3 � are leading. Here ' is
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taken as the unitary HLZ&H -matrix

'k;=) vwwwwwx ~ � �
. . . �� ~

y{zzzzz| 0
EXAMPLE 5.5. Here ',;�)$&�? ø}�%CW~ U F�~ � Fz0u0z0�F�~ 8 J

where à�~}�1á denote the set of Chebyshev points scaled to the interval
� �ÊF�ñ9� , whereS � ;�)'XQ8]� C���vR��JjTH&vR� F~}�";�)M��Ç�C�S��wÇ��ÍJ�C|ñXv��ÍJ�Ñ³ß9Fñ�;�)�� ��ÇD�ÊUI��L���� 8 M��v�� UI��L���� 8 M�� � F?��)k�z~ T}U W 0' has condition number m@CEH�J and smoothly distributed entries. In this example gha�b wins

and both gha6i and 3 3 � are bad.
EXAMPLE 5.6. Here ' is the block diagonal matrix'k;�) vwwwx j U j �

. . . j 8 ���
y{zzz|

with j � ;�) § ����vR�~ � © F �n)M�"Fyß�F}0z0u0zF9H$Ñ³ß9F
which ensures a bad distribution of singular values. Here both gha�b and a�jk3�lnb are
leading, but 3 3 � outperforms gha6i .

EXAMPLE 5.7. ' is chosen as in Example 5.6, but withj��6;�) § ����vR�~ v6� © F �n)M�"Fyß�F}0z0u0zF9H$Ñ³ß90
This choice of j�� causes failure of gha�b in the very first step. a�jk3hl�b is leading and3 3 � outperforms gha6i .

EXAMPLE 5.8. ' is taken as in Example 5.6, but withj � ;�) § S � å �~ ñ�ÑJS � © F
where å � ;�)MC|ñ¥��ÇG��v,SÍ�� v�ñ¥��Ñ}SÍ�� J�U���� and S � and ñ are defined as in Example 5.3. This leads
to fixed singular values and varying eigenvalues.
Here 3 3 � and gha6i lead and both are much better than gha�b and a�jk3hl�b .

EXAMPLE 5.9. ' is taken as in Example 5.6, but withj���;=) § ~ �v6��~ © 0
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This matrix is normal and has eigenvalues �.� and singular value � . Here both 3 3 � andgha6i require only one iteration, a�jk3hl�b requires two while gha�b fails.

The numerical results for Examples 5.1–5.7 are summarized in the next table listing the
number of iterations needed for convergence (tested by Ü98(� U W t�Ì [ t²¹�v6�z~ ). The number of
iterations was limited to 50, and if a method failed to converge within this limit then the final
accuracy is given by the number following � , e.g., � e-2 indicates that the final accuracy wast�Ì0� W tg�k�z~ TS� .

Example CGN CGS GMRES RK1

5.1 � e-6 � e-0 40 40
5.2 1 40 40 1
5.3 � e-4 20 38 50
5.4 � e-2 2 2 40
5.5 � e-2 Fails 3 40
5.6 2 20 38 2
5.7 1 Fails 2 1

We note that the residuals t�Ì1[�t behave erratically for gha6i . Its performance may be
improved if one uses sÌzWm;�)�' - ÌuW rather than sÌzWm;=)�ÌuW as taken in [19]. 3 3 � has common
features with gha6i : both perform excellently in Examples 5.2, 5.6 and 5.7, but 3 3 � avoids
the bad performance of gha6i in Examples 5.4, 5.5. 3 3 � never exceeded the maximum
number of iterations.

No preconditioning was tried. It is obvious that if Examples 5.1 and 5.3 are scaled (to
achieve a unit diagonal), one reaches the solution immediately within one iteration.

The comparison between these methods may include the number of matrix vector multi-
plications, of arithmetical operations, storage requirements and general rates of convergence.
However, we chose only the number of iterations and the reduction of the norm of the resid-
ual as in [19] as indicators of performance. After comparing different iterative algorithms,
Nachtigal et al. [19] concluded that it is always possible to find particular examples where
one method performs better than others: There is not yet a universal iterative solver which is
optimal for all problems.

6. Implementational issues and further discussion. There are several ways to realize
the Algorithm. We assume that V W ),' - and that ' is sparse, but V [ ( �4Ò�~ ) is not. Then
a direct realization of the Algorithm requires storage of a matrix V¼2/3 8¥7�5 , and in each
iteration, computation of 2 new matrix-vector products of the type V�[�� (neglecting products
with the sparse matrices ' and V@Wª) ' - ) and updating of V^[ to VX[ Y$U by means of the
dyadic product �}[ Ö -[ 2�3h8¥7�5 in Step 4 of the Algorithm. This requires essentially E³H}D
arithmetic operations (1 operation = 1 multiplication + 1 addition).

The arithmetic expense can be reduced by using the fact that any V�[ has the form VX[6)£Î[Í' - (see Propositon 2.3), where £w[n2&3 8¥798 is updated by£Î[ Y$U )Rå9["£Î[�Ç´��[Í��-[ Ñ9C�'%��[×F�ÐÍ[1J
and each product V [ � is computed as £ [ C|' - �.J . This scheme requires storage space for a
matrix £�2	3 8¥7�8 and only E³H�� operations/iteration, which is much less than E³H}D if HV7¯D .

Finally, if the Algorithm needs only few iterations, say at most ��7 H , one may store
only one set of vectors �}� , �%¹�� , explicitly (not two as with the rival method 3 3 ß of [17])
and use the formula (supposing that V@W.)�' - )VX[ Y$U )/å×Wuå U������ å�[ � p Ç [� � û W � � � -�C|'����äF�ÐÍ��Jéå�� � ' - 0(6.1)
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when computing products like V [ Ð [ and V [ Y$U Ì [ Y$U in the Algorithm. Using (6.1) to computeV [ � requires essentially the computation of 2 matrix-vector products of the forms£h-[ É$F s£Î[�<
with the matrix s£ [ ;=) � � W Fz0u0u0uFI� [ T}U �$2	3 8S7 [ F
which requires ßÊ�ËH operations to compute a product Vm[�� . This again is half the number of
operations as for the rank-2 methods in [17].

Our new update is connected to the previous one in the same way the SRK1 update is
related to the DFP-update as shown by Fletcher [9] and Brodlie et al. [2]. We may define
general updating expressions byVX[ Y$U )¤å}VX[·Ç´�}[ËC|b{�}[³J - Ñ�C�b{��[×F�Ð1[1J�0
This encompasses the case when ' is s.p.d., which requires b<) p and V W ) p , as well as the
more general case in which b¦)�' : this would require VXW�)�' - or a better starting matrix,
which secures that '%V@W is s.p.d. .

An alternative procedure is to update both Vm[ and the matrices \^[n;�)�'%VX[ using\ �[ )d\ [ Ç Ö"[ÍÖ -[ Ñ�C Ö"[ F�Ð [ J
This allows us to monitor the accuracy of the approximate inverse Vm[ by checking the size
of \X[Îv p . For reasons of economy, one could monitor only the diagonal or some row of \&[ .

The algorithm may be appropriate for solving initial value problems for partial differ-
ential equations as shown for rank-two updates in [17] and, for rank-one updates, in Exam-
ple 5.2. In such problems, we start with the given initial value and iterate to find the solution
for the next time level. The solution is considered to be acceptable if its accuracy is com-
parable to the discretization error of the governing differential equations.The final updated
estimate of the inverse obtained for the present time level is then taken as the initial estimate
of the inverse for the next time step.
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