A RANK-ONE UPDATING APPROACH FOR SOLVING SYSTEMS OF LINEAR EQUATIONS IN THE LEAST SQUARES SENSE*

A. MOHSEN ${ }^{\dagger}$ AND J. STOER ${ }^{\ddagger}$

Abstract

The solution of the linear system $A x=b$ with an $m \times n$-matrix A of maximal rank $\mu:=\min (m, n)$ is considered. The method generates a sequence of $n \times m$-matrices H_{k} and vectors x_{k} so that the $A H_{k}$ are positive semidefinite, the H_{k} approximate the pseudoinverse of A and x_{k} approximate the least squares solution of $A x=b$. The method is of the type of Broyden's rank-one updates and yields the pseudoinverse in μ steps.

Key words. linear least squares problems, iterative methods, variable metric updates, pseudo-inverse

AMS subject classifications. 65F10, 65F20

1. Introduction. We consider the problem of solving a rectangular system of linear equations $A x=b$ in the least squares sense. Note that x solves the associated normal equations

$$
A^{T} A x=A^{T} b .
$$

Here we suppose that the matrix $A \in R^{m \times n}$ has maximal rank $\mu:=\min (m, n)$. In the case $m=n$ this amounts to solving a nonsingular system $A x=b$ with a perhaps nonsymmetric matrix A by means of solving $A^{T} A x=A^{T} b$. When A is symmetric positive definite (s.p.d.), the classical conjugate gradient method $(c g)$ of Hestenes and Stiefel [13] belongs to the most powerful iterative methods. For solving general rectangular systems, a number of $c g$-type methods have been developed, see for instance [23]. In general solving such systems is more difficult than in the case of s.p.d. A. In this paper, we use rank-one updates to find approximations of the pseudoinverse of A, which, for instance, may be used as preconditioners for solving such systems with multiple right hand sides.

The use of a rank-one update to solve square systems with $A \in R^{n \times n}$ was studied by Eirola and Nevanlinna [8]. They invoked a conjugate transposed secant condition without line search. They proved that their algorithm terminates after at most n iteration steps, and if n steps are needed, then A^{-1} is obtained.

The problem was recently considered by Ichim [14] and by Mohsen and Stoer [17]. In [17], starting from an approximation H_{0} for the pseudoinverse A^{+}, or from A^{T} when such an approximation is not available, their method uses rank-2 updates to generate a sequence of $n \times m$-matrices H_{k} approximating A^{+}. Two rank-2 updates were proposed. One is related to the $D F P$ update and the other to the $B F G S$ update. Numerical results showed that both methods of [17], when used for the case $m=n$, give a better accuracy than the other rank-one update methods.

On the other hand, rank-one updating has attractive features in terms of computational requirements (lower number of operations, less storage). In this paper, rank-one updates (of Broyden's type) for matrices H_{k} are computed so that, in rather general situations, the sequence H_{k} terminates with the pseudoinverse in no more than μ steps. The properties of

[^0]the algorithm are established. For square systems, $m=n$, also the new method is compared with the methods $C G N, C G S$ and $G M R E S$, which try to solve $A x=b$ directly.

An alternative algorithm utilizing the s.p.d. matrices $D_{k}:=A H_{k}$ is proposed. It has the advantage that it can monitor the accuracy as $D_{k} \rightarrow I_{m}$. However, we then have to update two matrices (but note that the D_{k} are symmetric).
2. Rank-one updating. We consider the solution of the linear system

$$
\begin{equation*}
A x=b \tag{2.1}
\end{equation*}
$$

in the least squares sense: \bar{x} "solves" (2.1) if $\|b-A \bar{x}\|=\min _{x}\|b-A x\|$, that is if $A^{T}(b-$ $A \bar{x})=0$. We assume that $A \in R^{m \times n}$ has maximal rank, $\operatorname{rk} A=\mu:=\min (m, n)$. Here and in what follows, $\|x\|:=(x, x)^{1 / 2}$ is the Euclidean norm and $(x, y):=x^{T} y$ the standard scalar product in R^{m}. The vector space spanned by the vectors $u_{i} \in R^{m}, i=1,2, \ldots, k$, is denoted by

$$
\left[\left[u_{1}, u_{2}, \ldots, u_{k}\right]\right] .
$$

We note already at this point that all results of this paper can be extended to complex linear systems with a complex matrix $A \in C^{m \times n}$. One only has to define the inner product in C^{m} by

$$
(x, y):=x^{H} y
$$

Also the operator ${ }^{T}$ then has to be replaced by ${ }^{H}$ and the word "symmetric" by "Hermitian".
We call an $n \times m$-matrix $H A$-related if $A H$ is symmetric positive semidefinite (s.p.s.d.) and $x^{T} A H x=0$ implies that $x^{T} A=0$ and $H x=0$. Clearly, $H:=A^{T}$ is A-related, the pseudoinverse A^{+}(in the Moore Penrose sense) is A-related (this can be shown using the singular value decomposition of A and A^{+}); if A is s.p.d. then $H=I$ is A-related. It is easily verified that any matrix H of the form $H=U A^{T}$, where $U \in R^{n \times n}$ is s.p.d., is A-related.

This concept will be central since our algorithms aim to generate A-related matrices H_{k} which approximate A^{+}. It also derives its interest from the special case when A is a nonsingular, perhaps nonsymmetric, square matrix. It is easily verified that a matrix H is A-related if and only if $A H$ is symmetric positive definite. This means that H can be used as a right preconditioner to solve $A x=b$ by means of solving the equivalent positive definite system $A H y=b, x=H y$, using the $c g$-algorithm. Then the preconditioner H will be the better the smaller the condition number of $A H$ is. So the algorithms of this paper to find A related matrices H_{k} with good upper and lower bounds on the nonzero eigenvalues of $A H_{k}$ can be viewed as algorithms for computing good preconditioners H_{k} in the case of a full-rank A.

The following proposition gives another useful characterization of A-related matrices:
PROPOSITION 2.1. Let P be any unitary $m \times m$-matrix satisfying

$$
P A=\left[\begin{array}{c}
\tilde{A} \\
0
\end{array}\right]
$$

where \tilde{A} is a $\mu \times \underset{\tilde{H}}{n-m a t r i x}$ of rank $\mu=\min (m, n)=\operatorname{rk} A$. Define for an $n \times m$-matrix H the $n \times \mu$-matrix \tilde{H} and \tilde{U} by

$$
\left[\begin{array}{ll}
\tilde{H} & \tilde{U}
\end{array}\right]:=H P^{T}
$$

Then H is A-related if and only if the following holds

$$
\tilde{U}=0 \text { and } \tilde{A} \tilde{H} \text { is s.p.d., }
$$

and then

$$
P A H P^{T}=\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right]
$$

Proof. 1. Suppose that H is A-related. Then the matrix

$$
P A H P^{T}=\left[\begin{array}{cc}
\tilde{A} \tilde{H} & \tilde{A} \tilde{U} \\
0 & 0
\end{array}\right]
$$

is s.p.s.d. . Hence $\tilde{A} \tilde{U}=0$ and $\tilde{A} \tilde{H}$ is s.p.s.d.
Suppose $\tilde{U} \neq 0$. Then there is a vector y_{2} with $\tilde{U} y_{2} \neq 0$. Define $x:=P^{T} y$, where $y^{T}=\left[\begin{array}{ll}y_{1}^{T} & y_{2}^{T}\end{array}\right], y_{1}:=0$. Then

$$
x^{T} A H x=y^{T} P A H P^{T} y=\left[\begin{array}{ll}
0 & y_{2}^{T}
\end{array}\right]\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right]
$$

but

$$
H x=H P^{T} y=\left[\begin{array}{cc}
\tilde{H} & \tilde{U}
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right] \neq 0
$$

contradicting the A-relatedness of H. Hence $\tilde{U}=0$. Now suppose that $\tilde{A} \tilde{H}$ is only positive semidefinite but not positive definite. Then there is a vector $y_{1} \neq 0$ such that $\tilde{A} \tilde{H} y_{1}=0$. But then $y_{1}^{T} \tilde{A} \neq 0$, because \tilde{A} has full row rank, and

$$
\left[\begin{array}{ll}
y_{1}^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
0
\end{array}\right]=0
$$

Hence the corresponding

$$
x:=P^{T}\left[\begin{array}{c}
y_{1} \\
0
\end{array}\right]
$$

satisfies

$$
x^{T} A H x=\left[\begin{array}{ll}
y_{1}^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
0
\end{array}\right]=0
$$

but

$$
x^{T} A=\left[\begin{array}{ll}
y_{1}^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right] \neq 0
$$

again contradicting the A-relatedness of H.
2. Conversely, suppose that P, A and H satisfy the conditions of the proposition and assume $x^{T} A H x=0$. Then with $y^{T}=\left[y_{1}^{T}, y_{2}^{T}\right]:=x^{T} P^{T}$,

$$
x^{T} A H x=\left[\begin{array}{ll}
y_{1}^{T} & y_{2}^{T}
\end{array}\right]\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=0
$$

so that $y_{1}=0$. But then

$$
x^{T} A=y^{T} P A=\left[\begin{array}{ll}
0 & y_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
\tilde{A} \\
0
\end{array}\right]=0
$$

and likewise

$$
H x=H P^{T} y=\left[\begin{array}{ll}
\tilde{H} & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right]=0
$$

Hence H is A-related.
In the case $\mu=m \leq n$, we can choose $P:=I$ and the proposition reduces to the following corollary, which has a simple direct proof.

Corollary 2.2. If the matrix A has full row rank, then H is A-related iff $A H$ is a symmetric positive definite matrix.

Proof. If $A H$ is s.p.d., then $x^{T} A H x=0$ gives $x=0$. Conversely, if H is A-related, then $x^{T} A H x=0$ implies $A^{T} x=0$ and, therefore, $x=0$ since A^{T} has full column rank. Hence the s.p.s.d. matrix $A H$ is s.p.d..

We noted above that any matrix H of the form $H=U A^{T}$, where $U \in R^{n \times n}$ is s.p.d., is A-related. The converse is also true:

Proposition 2.3. A matrix $H \in R^{n \times m}$ is A-related iff it has the form $H=U A^{T}$, where $U \in R^{n \times n}$ is s.p.d..

Proof. We prove the result only for the most important case of a full column rank matrix $A, m \geq n=\mu$.
Let H be A-related. Since $x^{T} A H x=0$ implies $A^{T} x=0$ and $H x=0, A^{T} x=0$ is equivalent to $H x=0$, that is H and A^{T} have the form $H=U A^{T}, A^{T}=V H$ for some matrices $U, V \in R^{n \times n}$. As A^{T} has full column rank $n=\mu$, so has H. This implies that U is nonsingular and $V=U^{-1}$. Since $A H=A U A^{T}$ is s.p.s.d. and $A U A^{T}=\left(A U A^{T}\right)^{T}=$ $A U^{T} A^{T}$, and therefore by the nonsingularity of $A A^{T}$

$$
A^{T} A U A^{T} A=A^{T} A U^{T} A^{T} A \Longrightarrow U=U^{T}
$$

showing that U is symmetric, nonsingular and positive semidefinite, and therefore a s.p.d. matrix.

The methods for solving (2.1) will be iterative. The new iterate x_{k+1} is related to the previous iterate by

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}=x_{k}+y_{k}
$$

where the search direction p_{k} is determined by the residual $r_{k}=b-A x_{k}$ via an A-related $n \times m$ matrix H_{k} of rank μ by

$$
p_{k}=H_{k} r_{k}
$$

We will assume $p_{k} \neq 0$, because otherwise

$$
A p_{k}=A H_{k} r_{k}=0 \Rightarrow\left(A H_{k} r_{k}, r_{k}\right)=0
$$

so that, by the A-relatedness of $H_{k}, A^{T} r_{k}=0$, that is, x_{k} is a (least-squares) solution of (2.1).

We also note that $p_{k} \neq 0$ implies $A p_{k} \neq 0$, because otherwise, again by A-relatedness,

$$
0=\left(A p_{k}, r_{k}\right)=\left(A H_{k} r_{k}, r_{k}\right) \Rightarrow H_{k} r_{k}=p_{k}=0
$$

Hence the scalar products $\left(A p_{k}, r_{k}\right),\left(A p_{k}, A p_{k}\right)$ will be positive.
Now, the stepsize α_{k} is chosen to minimize the Euclidean norm $\left\|r_{k+1}\right\|$. Thus,

$$
r_{k+1}=r_{k}-\alpha_{k} A p_{k}=r_{k}-z_{k}
$$

where

$$
\alpha_{k}=\left(A p_{k}, r_{k}\right) /\left(A p_{k}, A p_{k}\right)>0
$$

Hence α_{k} is well defined and

$$
\begin{aligned}
\left(r_{k+1}, z_{k}\right) & =0=\left(r_{k+1}, A H_{k} r_{k}\right) \\
\left(r_{k+1}, r_{k+1}\right) & =\left(r_{k}, r_{k}\right)-\left|\left(r_{k}, A p_{k}\right)\right|^{2} /\left(A p_{k}, A p_{k}\right) \\
& <\left(r_{k}, r_{k}\right)
\end{aligned}
$$

We update H_{k} using a rank-one correction

$$
H_{k+1}=H_{k}+u_{k} v_{k}^{T}, \quad u_{k} \in R^{n}, \quad v_{k} \in R^{m}
$$

Upon invoking the secant condition

$$
H_{k+1} z_{k}=y_{k}
$$

we get the update formula of Broyden type [3],

$$
\begin{align*}
H_{k+1} & =H_{k}+\left(y_{k}-H_{k} z_{k}\right) v_{k}^{T} /\left(v_{k}, z_{k}\right) \\
& =H_{k}+u_{k} v_{k}^{T} /\left(v_{k}, z_{k}\right), \quad u_{k}:=y_{k}-H_{k} z_{k} \tag{2.2}
\end{align*}
$$

provided that $\left(v_{k}, z_{k}\right) \neq 0$. The updates (2.2) are invariant with respect to a scaling of v_{k}. It can be shown (see [10]) that for $m=n$ the matrix H_{k+1} is nonsingular iff H_{k} is nonsingular and $\left(v_{k}, H_{k}^{-1} y_{k}\right) \neq 0$. If $m=n$ and A is s.p.d., then it is usually recommended to start the method with $H_{0}:=I$ and to use $v_{k}:=u_{k}=y_{k}-H_{k} z_{k}$, which results in the symmetric rank-one method (SRK1) of Broyden [21] and leads to symmetric matrices H_{k}. However, it is known that SRK1 may not preserve the positive definitness of the updates H_{k}. This stimulated the work to overcome this difficulty [22], [16], [24], [15].

When A is nonsymmetric, the good Broyden (GB) updates result from the choice $v_{k}:=$ $H_{k}^{T} y_{k}$, while the bad Broyden (BB) updates take $v_{k}:=z_{k}$. For $\alpha_{k}:=1$ and solving linear systems, Broyden [4] proved the local R-superlinear convergence of GB (that is, the errors $\epsilon_{k}:=\left\|x_{k}-x^{*}\right\| \leq \theta_{k}$ are bounded by a superlinearly convergent sequence $\theta_{k} \downarrow 0$). In Moré and Trangenstein [18], global Q-superlinear convergence (i.e. $\lim _{k \rightarrow \infty} \epsilon_{k+1} / \epsilon_{k}=$ 0) for linear systems is achieved using a modified form of Broyden's method. For $A \in$ $R^{n \times n}$, Gay [10] proved that the solution using update (2.2) is found in at most $2 n$ steps. The generation of $\left\{v_{k}\right\}$ as a set of orthogonal vectors was considered by Gay and Schnabel [11]. They proved termination of the method after at most n iterations.

The application of Broyden updates to rectangular systems was first considered by Gerber and Luk [12]. The use of the Broyden updates (2.2) for solving non-Hermitian square systems was considered by Deuflhard et al. [7]. For both GB and BB, they introduced an error matrix and showed the reduction of its Euclidean norm. For GB they provided a condition
on the choice of H_{0} ensuring that all H_{k} remain nonsingular. They also discussed the choice $v_{k}:=H_{k}^{T} H_{k} z_{k}$, But in this case, no natural measure for the quality of H_{k} was available, which makes the method not competitive with GB and BB. For GB and BB, they showed the importance of using an appropriate line search to speed up the convergence.

In this paper, we start with an A-related matrix H_{0} and wish to make sure that all H_{k} remain A-related. Hence the recursion (2.2) should at least preserve the symmetry of the $A H_{k}$. This is ensured iff

$$
v_{k}=A u_{k}
$$

or equivalently

$$
\begin{align*}
& u_{k}=y_{k}-H_{k} z_{k}=\left(I-H_{k} A\right) y_{k}=H_{k}\left(\alpha_{k} r_{k}-z_{k}\right)=H_{k} t_{k} \\
& v_{k}=A\left(y_{k}-H_{k} z_{k}\right)=\left(I-A H_{k}\right) z_{k}=A H_{k} t_{k} \tag{2.3}
\end{align*}
$$

where t_{k} is the vector $t_{k}:=\alpha_{k} r_{k}-z_{k}$.
However, the scheme (2.2), (2.3) may break down when $\left(v_{k}, z_{k}\right)=0$ and, in addition, it may not ensure that $A H_{k+1}$ is again A-related. We will see that both difficulties can be overcome.
3. Ensuring positive definiteness and A-relatedness. For simplicity, we drop the iteration index k and replace $k+1$ by a star *. We assume that H is A-related and $p=H r \neq 0$, so that $(A H r, r)>0$ and $(A p, A p)>0$. Following Kleinmichel [16] and Spedicato [24], we scale the matrix H by a scaling factor $\gamma>0$ before updating. This leads to

$$
H^{*}=\gamma H+u v^{T} /(v, z)
$$

where $u=y-\gamma H z=H(\alpha r-\gamma z)=H t, v=A u=A H t$ and $t=\alpha r-\gamma z$. Therefore,

$$
\begin{align*}
H^{*} & =\gamma H+H t(A H t)^{T} /(A H t, z), \tag{3.1}\\
A H^{*} & =\gamma A H+A H t(A H t)^{T} /(A H t, z) . \tag{3.2}
\end{align*}
$$

Then, introducing the abbreviations

$$
\beta_{1}:=(A H r, r), \quad \beta_{2}:=(A H z, z), \quad \beta^{*}:=\left(A H r^{*}, r^{*}\right)
$$

we find

$$
\begin{gathered}
\beta_{1}>0, \quad \beta^{*} \geq 0, \quad \beta_{2} \geq \beta_{1}>0 \\
\alpha=\frac{(A p, r)}{(A p, A p)}=\frac{(A H r, r)}{(A H r, A H r)}>0
\end{gathered}
$$

and an easy calculation, $\operatorname{using}\left(r^{*}, z\right)=0, z=r-r^{*}$, shows

$$
\beta_{2}=\beta_{1}+\beta^{*}
$$

and the following formula for the denominator in (3.2),

$$
\begin{equation*}
(v, z)=(A H t, z)=(\alpha A H r-\gamma A H z, z)=\alpha \beta_{1}-\gamma \beta_{2}=(\alpha-\gamma) \beta_{1}-\gamma \beta^{*} \tag{3.3}
\end{equation*}
$$

Since H is A-related, Proposition 2.1 can be applied. Hence, there exist a unitary $m \times m$ matrix P and $\mu \times n$-matrices \tilde{A}, \tilde{H}^{T}, such that

$$
P A=\left[\begin{array}{c}
\tilde{A} \\
0
\end{array}\right], \quad H P^{T}=\left[\begin{array}{ll}
\tilde{H} & 0
\end{array}\right], \quad P A H P^{T}=\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right]
$$

$\tilde{A} \tilde{H}$ is symmetric positive definite.

Then (3.1), (3.2) preserve the block structure of $H P^{T}$ and $P A H P^{T}$. Replacing t by

$$
\tilde{t}=\left[\begin{array}{l}
\tilde{t}_{1} \\
\tilde{t}_{2}
\end{array}\right]:=P t, \quad \tilde{t}_{1} \in R^{\mu},
$$

we find

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\tilde{H}^{*} & 0
\end{array}\right]:=H^{*} P^{T}=\gamma\left[\begin{array}{ll}
\tilde{H} & 0
\end{array}\right]+\frac{\tilde{H} \tilde{t}_{1} \tilde{t}_{1}^{T}\left[\begin{array}{ll}
\tilde{A} \tilde{H} & 0
\end{array}\right]}{(A H t, z)},} \\
& \left.\left[\begin{array}{cc}
\tilde{A} \tilde{H}^{*} & 0 \\
0 & 0
\end{array}\right]:=P A H^{*} P^{T}=\gamma\left[\begin{array}{cc}
\tilde{A} \tilde{H} & 0 \\
0 & 0
\end{array}\right]+\frac{\left[\begin{array}{c}
\tilde{A} \tilde{H} \\
0
\end{array}\right] \tilde{t}_{1} \tilde{t}_{1}^{T}[\tilde{A} \tilde{H}}{} 0\right]
\end{aligned}
$$

Hence, by Proposition 2.1, $A H^{*}$ is A-related if and only if

$$
\begin{equation*}
\tilde{A} \tilde{H}^{*}=\gamma \tilde{A} \tilde{H}+\frac{\tilde{A} \tilde{H} \tilde{t}_{1}\left(\tilde{A} \tilde{H} \tilde{t}_{1}\right)^{T}}{(A H t, z)} \tag{3.4}
\end{equation*}
$$

is positive definite.
Since $\tilde{A} \tilde{H}$ is s.p.d. and $\gamma>0,(\gamma \tilde{A} \tilde{H})^{1 / 2}$ is well defined and $\tilde{A} \tilde{H}^{*}$ satisfies

$$
\begin{equation*}
(\gamma \tilde{A} \tilde{H})^{-1 / 2}\left(\tilde{A} \tilde{H}^{*}\right)(\gamma \tilde{A} \tilde{H})^{-1 / 2}=I+\frac{(\tilde{A} \tilde{H})^{1 / 2} \tilde{t}_{1} \tilde{t}_{1}^{T}(\tilde{A} \tilde{H})^{1 / 2}}{\gamma(A H t, z)}=: U \tag{3.5}
\end{equation*}
$$

The matrix U has the eigenvalues 1 (with multiplicity $\mu-1$) and, with multiplicity 1 , the eigenvalue

$$
\varphi(\gamma):=1+\frac{1}{\gamma} \frac{\left(\tilde{A} \tilde{H} \tilde{t}_{1}, \tilde{t}_{1}\right)}{(A H t, z)}
$$

But as is easily seen, $\left(\tilde{A} \tilde{H} \tilde{t}_{1}, \tilde{t}_{1}\right)=(A H t, t)$, so that by (3.3),

$$
\begin{equation*}
\varphi(\gamma)=\frac{1}{\gamma} \frac{\alpha(\alpha-\gamma) \beta_{1}}{\alpha \beta_{1}-\gamma \beta_{2}} \tag{3.6}
\end{equation*}
$$

Hence, H^{*} will be A-related, iff $\gamma>0$ satisfies $\alpha \beta_{1}-\gamma \beta_{2} \neq 0$ and

$$
\frac{\alpha(\alpha-\gamma) \beta_{1}}{\alpha \beta_{1}-\gamma \beta_{2}}>0
$$

that is iff

$$
\begin{equation*}
0<\gamma<\frac{\alpha \beta_{1}}{\beta_{2}}=\alpha \frac{\beta_{1}}{\beta_{1}+\beta *} \quad \text { or } \quad \gamma>\alpha \tag{3.7}
\end{equation*}
$$

In view of the remark before Corollary 4.5 (see below), the choice $\gamma=1$ seems to be favorable. By (3.7), this choice secures that H^{*} is A-related unless $\alpha, \beta_{1}, \beta^{*}$ satisfy

$$
\begin{equation*}
1 \leq \alpha \leq 1+\frac{\beta^{*}}{\beta_{1}} \tag{3.8}
\end{equation*}
$$

Next we derive bounds for the condition number of $\tilde{A} \tilde{H}^{*}$ and follow the reasoning of Oren and Spedicato [20]. Let $\tilde{D}:=\tilde{A} \tilde{H}$ and $\tilde{D}^{*}:=\tilde{D} \tilde{H}^{*}$. Then by (3.4),

$$
\tilde{D}^{*}=\gamma \tilde{D}+\tilde{D} \tilde{t}_{1}\left(\tilde{D} \tilde{t}_{1}\right)^{T} /(A H t, z)
$$

where we assume that \tilde{D} is s.p.d. and γ satisfies (3.7), so that also \tilde{D}^{*} is s.p.d. Then the condition number $\kappa(\tilde{D})$ with respect to the Euclidean norm is given by

$$
\kappa(\tilde{D})=\frac{\lambda_{\max }(\tilde{D})}{\lambda_{\min }(\tilde{D})}=\frac{\max _{x \neq 0} x^{T} \tilde{D} x / x^{T} x}{\min _{x \neq 0} x^{T} \tilde{D} x / x^{T} x}
$$

Then by (3.5) for any $x \neq 0$,

$$
\begin{aligned}
\frac{x^{T} \tilde{D}^{*} x}{x^{T} x} & =\frac{x^{T}(\gamma \tilde{D})^{1 / 2} U(\gamma \tilde{D})^{1 / 2} x}{x^{T} \gamma \tilde{D} x} \frac{x^{T} \gamma \tilde{D} x}{x^{T} x} \\
& \leq \lambda_{\max }(U) \gamma \lambda_{\max }(\tilde{D})
\end{aligned}
$$

and, similarly,

$$
\frac{x^{T} \tilde{D}^{*} x}{x^{T} x} \geq \lambda_{\min }(U) \gamma \lambda_{\min }(\tilde{D})
$$

Now, the eigenvalues of U are 1 and $\varphi(\gamma)$ is given by (3.6). Hence,

$$
\begin{aligned}
\lambda_{\max }\left(\tilde{D}^{*}\right) & \leq \max (1, \varphi(\gamma)) \gamma \lambda_{\max }(\tilde{D}) \\
\lambda_{\min }\left(\tilde{D}^{*}\right) & \geq \min (1, \varphi(\gamma)) \gamma \lambda_{\min }(\tilde{D})
\end{aligned}
$$

so that, finally,

$$
\kappa\left(\tilde{D}^{*}\right) \leq \Phi(\gamma) \kappa(\tilde{D})
$$

where

$$
\Phi(\gamma):=\frac{\max (1, \varphi(\gamma))}{\min (1, \varphi(\gamma))}
$$

Note that \tilde{D}^{*} depends on $\gamma, \tilde{D}^{*}=\tilde{D}^{*}(\gamma)$. Unfortunately, the upper bound for $\kappa\left(\tilde{D}^{*}\right)$ just proved is presumably too crude; in particular it does not allow us to conclude that $\kappa\left(\tilde{D}^{*}\right)<$ $\kappa(\tilde{D})$ for certain values of γ. Nevertheless, one can try to minimize the upper bound by minimizing $\Phi(\gamma)$ with respect to γ on the set Γ of all γ satisfying (3.6). The calculation is tedious though elementary. With the help of MATHEMATICA one finds for the case $\beta^{*}>0$, that is $\beta_{2}>\beta_{1}$, that Φ has exactly two local minima on Γ, namely

$$
\begin{align*}
& \gamma_{+}:=\alpha\left(1+\sqrt{\beta^{*} / \beta_{2}}\right)>\alpha \\
& \gamma_{-}:=\alpha\left(1-\sqrt{\beta^{*} / \beta_{2}}\right)<\alpha \frac{\beta_{1}}{\beta_{2}} \tag{3.9}
\end{align*}
$$

Both minima are also global minima, and they satisfy

$$
\Phi\left(\gamma_{+}\right)=\Phi\left(\gamma_{-}\right)=\frac{\beta_{1} \sqrt{\beta^{*} / \beta_{2}}+\beta^{*}\left(1+\sqrt{\beta^{*} / \beta_{2}}\right)}{\beta_{1} \sqrt{\beta^{*} / \beta_{2}}-\beta^{*}\left(1-\sqrt{\beta^{*} / \beta_{2}}\right)}>1
$$

4. The algorithm and its main properties. Now, let H_{0} be any A-related starting matrix, and x_{0} a starting vector. Then the algorithm for solving $A x=b$ in the least squares sense and computing a sequence of A-related matrices H_{k} is given by:
Algorithm: Let A be a $m \times n$-matrix of maximal rank, $b \in R^{m}, H_{0}$ be A-related, and $x_{0} \in R^{n}$ a given vector.

For $k=0,1, \ldots$

1. Compute the vectors $r_{k}=b-A x_{k}, p_{k}:=H_{k} r_{k}$. If $p_{k}=0$ then stop.
2. Otherwise, compute

$$
\begin{aligned}
\alpha_{k} & :=\left(A p_{k}, r_{k}\right) /\left(A p_{k}, A p_{k}\right) \\
x_{k+1} & :=x_{k}+\alpha_{k} p_{k}, \quad y_{k}:=x_{k+1}-x_{k} \\
r_{k+1} & :=r_{k}-A y_{k}, \quad z_{k}:=r_{k}-r_{k+1}
\end{aligned}
$$

3. Define

$$
\beta_{1}:=\left(A H_{k} r_{k}, r_{k}\right)=\left(A p_{k}, r_{k}\right), \quad \beta^{*}:=\left(A H_{k} r_{k+1}, r_{k+1}\right)
$$

4. Set $\gamma_{k}:=1$ if (3.8) does not hold.

Otherwise compute any $\gamma_{k}>0$ satisfying (3.7), say by using (3.9),

$$
\gamma_{k}:= \begin{cases}\gamma_{+}, & \text {if } \beta^{*}>0 \\ \alpha_{k}(1+\mathrm{eps}), & \text { if } \beta^{*}=0\end{cases}
$$

where eps is the relative machine precision.
Compute $u_{k}:=y_{k}-\gamma_{k} H_{k} z_{k}, v_{k}:=A u_{k}$ and

$$
H_{k+1}:=\gamma_{k} H_{k}+u_{k} v_{k}^{T} /\left(v_{k}, z_{k}\right)
$$

Set $k:=k+1$ and goto 1 .
We have already seen that step 2 is well-defined if $p_{k} \neq 0$, because then $\left(A r_{k}, r_{k}\right)>0$ and $A p_{k} \neq 0$, if H_{k} is A-related. Moreover, $p_{k}=0$ implies $A^{T} r_{k}=A^{T}\left(b-A x_{k}\right)=0$, i.e., x_{k} is a least-squares solution of (2.1), and the choice of γ_{k} in step 2 secures also that H_{k+1} is A-related. Hence, the algorithm is well-defined and generates only A-related matrices H_{k}. This already proves part of the main theoretical properties of the algorithm stated in the following theorem:

THEOREM 4.1. Let A be real $m \times n$-matrix of maximal rank $\mu:=\min (m, n), H_{0}$ an A-related real $n \times m$-matrix and $x_{0} \in R^{n}$. Then the algorithm is well-defined and stops after at most μ steps: There is a smallest index $l \leq \mu$ with $p_{l}=0$, and then the following holds:

$$
\left\|A x_{l}-b\right\|=\min _{x}\|A x-b\|
$$

and in particular $A x_{l}=b$ if $m \leq n$. Moreover

1. H_{j} is A-related for $0 \leq j \leq l$.
2. $H_{k} z_{i}=\gamma_{i, k} y_{i}$ for $0 \leq i<k \leq l$, where

$$
\gamma_{i, k}:= \begin{cases}\gamma_{i+1} \gamma_{i+2} \cdots \gamma_{k-1} & \text { for } i<k-1 \\ 1 & \text { for } i=k-1\end{cases}
$$

3. $\left(r_{k}, z_{i}\right)=0$ for $0 \leq i<k \leq l$.
4. $\left(z_{k}, z_{i}\right)=0$ for $i \neq k \leq l$.
5. $z_{k} \neq 0$ for $0 \leq k<l$.

Proof. Denote by $\left(P_{k}\right)$ the following properties:

1) H_{j} is A-related for $0 \leq j \leq k$.
2) $H_{j} z_{i}=\gamma_{i, j} y_{i}$ for $0 \leq i<j \leq k$.
3) $\left(r_{j}, z_{i}\right)=0$ for $0 \leq i<j \leq k$.
4) $\left(z_{j}, z_{i}\right)=0$ for $0 \leq i<j<k$.
5) $z_{j} \neq 0$ for $0 \leq j<k$.

By the remarks preceding the theorem, the algorithm is well-defined as long as $p_{k} \neq 0$ and the matrices H_{k} are A-related. $\left.\left(P_{k}\right), 4\right)$ and 5) imply that the k vectors $z_{i}, i=0,1, \ldots, k-1$, are linearly independent and, since $z_{i}=A y_{i} \in \mathcal{R}(A)$ and $\operatorname{dim} \mathcal{R}(A)=\mu$, property $\left(P_{k}\right)$ cannot be true for $k>\mu$. Therefore, the theorem is proved, if $\left(P_{0}\right)$ holds and the following implication is shown:

$$
\left(P_{k}\right), p_{k} \neq 0 \Longrightarrow\left(P_{k+1}\right)
$$

1) $\left.\left(P_{k+1}\right), 1\right)$ follows from the choice of γ_{k} that H_{k+1} is well-defined and A-related if is H_{k}.
2) To prove $\left.\left(P_{k+1}\right), 2\right)$ we first note that

$$
H_{k+1} z_{k}=y_{k}
$$

by the definition of H_{k}. In addition for $i<k,\left(P_{k}\right)$ and the definition of $\gamma_{i, k}$ imply

$$
H_{k+1} z_{i}=\gamma_{k} H_{k} z_{i}=\gamma_{k} \gamma_{i, k} y_{i}=\gamma_{i, k+1} y_{i}
$$

since $\left(z_{k}, z_{i}\right)=0$ and

$$
\left(A H_{k} z_{k}, z_{i}\right)=\left(z_{k}, A H_{k} z_{i}\right)=\left(z_{k}, A \gamma_{i, k} y_{i}\right)=\left(z_{k}, \gamma_{i, k} z_{i}\right)=0
$$

This proves $\left.\left(P_{k+1}\right), 2\right)$.
3) Since $\left(r_{k+1}, z_{k}\right)=0$, and for $i<k$,

$$
\left(r_{k+1}, z_{i}\right)=\left(r_{i+1}+\sum_{j=i+1}^{k} z_{j}, z_{i}\right)=0
$$

because of $\left.\left.\left(P_{k}\right), 3\right), 4\right)$. This proves $\left.\left(P_{k+1}\right), 3\right)$.
4) By $\left(P_{k+1}\right), 3$) we have for $i<k$

$$
\left(z_{i}, z_{k}\right)=\left(z_{i}, r_{k}-r_{k+1}\right)=0
$$

Hence $\left(P_{k+1}\right), 4$) holds.
It was already noted that $p_{k} \neq 0$ implies $z_{k} \neq 0$. Hence $\left(P_{k+1}, 5\right)$ holds. This completes the proof of the theorem.

REMARK 4.2. In the case $m \geq n=\mu$, the algorithm finds the solution $\bar{x}:=\arg \min _{x}$ $\|A x-b\|$, which is unique. In the case $m=\mu<n$, the algorithm finds only some solution \bar{x} of the many solutions of $A x=b$, usually not the interesting particular solution of smallest Euclidean norm. This is seen from simple examples, when for instance the algorithm is started with a solution x_{0} of $A x=b$ that is different from the least norm solution: the algorithm then stops immediately with $\bar{x}:=x_{0}$, irrespective of the choice of H_{0}.

The least squares, minimal norm solution x^{*} of $A x=b$ can be computed as follows: let \bar{b} be any solution of $A x=b$ (computed by the algorithm) and compute y^{*} as the least squares
solution of $A^{T} y=\bar{b}$ again by the algorithm (but with A replaced by A^{T} and b by \bar{b}). Then $x^{*}=A^{T} y^{*}$ is the least squares solution of $A x=b$ with minimal norm.

We also note that the algorithm of this paper belongs to the large ABS-class of algorithms (see Abaffy, Broyden and Spedicato [5]). As is shown in [25], also the minimal norm solution of a $A x=b, A \in R^{m \times n}, m=\mu<n$, can be computed by invoking suitable algorithms of the $A B S$-class twice.

Corollary 4.3. Under the hypotheses of Theorem 4.1, the following holds. If the algorithm does not stop prematurely, that is if $\mu=\min (m, n)$ is the first index with $p_{l}=0$, $l=\mu$, then

$$
\begin{array}{ll}
A H_{\mu}=Z D Z^{-1}, & \text { if } \mu=m \leq n \\
H_{\mu} A=Y D Y^{-1}, & \text { if } \mu=n \leq m
\end{array}
$$

with the matrices

$$
\left.\begin{array}{rl}
Z & :=\left[\begin{array}{llll}
z_{0} & z_{1} & \ldots & z_{\mu-1}
\end{array}\right] \\
Y & :=\left[\begin{array}{lll}
y_{0} & y_{1} & \ldots
\end{array} y_{\mu-1}\right.
\end{array}\right],
$$

That is, if $\gamma_{k}=1$ for all k, then $D=I$ so that H_{μ} is a right-inverse of A if $\mu=m \leq n$, and a left-inverse if $\mu=n \leq m$.

Proof. Part 2. of Theorem 4.1 and the definitions of D, Z, Y imply

$$
\begin{equation*}
H_{\mu} Z=Y D, \quad A Y=Z \tag{4.1}
\end{equation*}
$$

The μ columns $z_{i} \in R^{\mu}$ of Z are linearly independent by parts 4 . and 5 . of Theorem 4.1 (they are even orthogonal to each other), so that by $A Y=Z$ also the columns $y_{i} \in R^{n}$ of the matrix Y are linearly independent.

Hence, for $\mu=m \leq n, Z^{-1}$ exists and by (4.1)

$$
A H_{\mu} Z=Z D \Rightarrow A H_{\mu}=Z D Z^{-1}
$$

and for $\mu=n \leq m, Y^{-1}$ exists, which implies by (4.1)

$$
H_{\mu} Z=H_{\mu} A Y=Y D \Rightarrow H_{\mu} A=Y D Y^{-1}
$$

As a byproduct of the corollary we note

$$
\begin{aligned}
A H_{\mu} A & = \begin{cases}Z D Z^{-1} A & \text { if } m \leq n \\
A Y D Y^{-1} & \text { if } m \geq n\end{cases} \\
H_{\mu} A H_{\mu} & = \begin{cases}H_{\mu} Z D Z^{-1} & \text { if } m \leq n \\
Y D Y^{-1} H_{\mu} & \text { if } m \geq n\end{cases}
\end{aligned}
$$

If $D=I$ (i.e., $\gamma_{k}=1$ for all k) these formulae reduce to

$$
A H_{\mu} A=A, \quad H_{\mu} A H_{\mu}=H_{\mu}
$$

Since then, for $\mu=n \leq m$, in addition, both $H_{\mu} A=I_{m}$ and $A H_{\mu}$ are symmetric, H_{μ} must be the Moore-Penrose pseudoinverse A^{+}of A.

REMARK 4.4. Consider the special case $\mu=m=n$ of a nonsingular matrix A. Then, $A H_{n}$ is s.p.d. and, by the corollary, $A H_{n}=Z D Z^{-1}$, so that the eigenvalues of $A H_{n}$ are just the diagonal elements of D. Hence its condition number is $\kappa\left(A H_{n}\right)=\kappa(D)$. Since the
algorithm chooses the scaling parameter $\gamma_{k}=1$ as often as possible, $A H_{n}$ will presumably have a relatively small condition number even if $D \neq I$.

Theorem 4.1, part 3. implies a minimum property of the residuals:
COROLLARY 4.5. For $k<l$, the residuals satisfy

$$
\left\|r_{k+1}\right\|=\min _{\lambda_{i}}\left\|b-A\left(x_{0}+\sum_{i=0}^{k} \lambda_{i} p_{i}\right)\right\| .
$$

Proof. By the algorithm

$$
\alpha_{i} A p_{i}=\alpha_{i} A H_{i} r_{i}=z_{i}
$$

so that

$$
r_{k+1}=r_{0}-\sum_{i=0}^{k} \alpha_{i} A p_{i}=r_{0}-\sum_{i=0}^{k} z_{i}
$$

Hence

$$
\Phi\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}\right):=\left\|b-A\left(x_{0}+\sum_{i=0}^{k} \lambda_{i} p_{i}\right)\right\|^{2}=\left\|r_{0}-\sum_{i=0}^{k} \frac{\lambda_{i}}{\alpha_{i}} z_{i}\right\|^{2}
$$

is a convex quadratic function with minimum $\lambda_{i}=\alpha_{i}, i=0,1, \ldots, k$, since

$$
\Phi_{\lambda_{i}}^{\prime}\left(\alpha_{0}, \ldots, \alpha_{k}\right)=\frac{1}{\alpha_{i}}\left(r_{k+1}, z_{i}\right)=0, \quad i=0, \ldots, k
$$

by Theorem 4.1, part 3 . \quad I
We note that the space $\left[\left[z_{0}, z_{1}, \ldots, z_{k}\right]\right]$ is closely related to the Krylov space

$$
K_{k+1}\left(A H_{0}, r_{0}\right):=\left[\left[r_{0}, A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k} r_{0}\right]\right] \subset R^{m}
$$

generated by the matrix $A H_{0}$ and the initial residual r_{0} :
THEOREM 4.6. Using the notation of Theorem 4.1, the following holds for $0 \leq k<l$

$$
\begin{aligned}
& r_{k} \in\left[\left[r_{0}, A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k} r_{0}\right]\right]=K_{k+1}\left(A H_{0}, r_{0}\right) \\
& z_{k} \in\left[\left[A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k+1} r_{0}\right]\right]=A H_{0} K_{k+1}\left(A H_{0}, r_{0}\right) \\
& {\left[\left[z_{0}, z_{1}, \ldots, z_{k}\right]\right]=\left[\left[A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k+1} r_{0}\right]\right]}
\end{aligned}
$$

that is $z_{0}, z_{1}, \ldots, z_{k}$ is an orthogonal basis of $A H_{0} K_{k+1}\left(A H_{0}, r_{0}\right)$ and

$$
\operatorname{dim} A H_{0} K_{k+1}\left(A H_{0}, r_{0}\right)=k+1
$$

Proof. The assertions are true for $k=0$, since

$$
z_{0}=A y_{0}=\alpha_{0} A H_{0} r_{0} \in\left[\left[A H_{0} r_{0}\right]\right] .
$$

Now

$$
A H_{k} z_{k} \in\left[\left[A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k+2} r_{0}\right]\right], \quad 0 \leq k<l
$$

$$
r_{k+1}=r_{k}-z_{k}, \quad z_{k} \alpha_{k} A H_{k} r_{k} \in\left[\left[A H_{k} r_{k}\right]\right], \quad \alpha_{k} \neq 0
$$

For any vector $u \in R^{m}$

$$
\begin{aligned}
& A H_{k+1} u \in\left[\left[A H_{k} u\right]\right]+\left[\left[z_{k}\right]\right]+\left[\left[A H_{k} z_{k}\right]\right] \\
& \vdots \\
& \in\left[\left[A H_{0} u\right]\right]+\left[\left[A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k+2} r_{0}\right]\right] \\
& {\left[\left[z_{0}, z_{1}, \ldots, z_{k}\right]\right] \subset\left[\left[A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k+1} r_{0}\right]\right]} \\
& \operatorname{dim}\left[\left[A H_{0} r_{0}, \ldots,\left(A H_{0}\right)^{k+1} r_{0}\right]\right] \leq k+1 .
\end{aligned}
$$

5. Comparison with other methods and numerical results. The numerical tests are concentrated to the cases $m=n+1$ and $m=n$ for the following two reasons: The first is that it is harder to solve least squares problems with $n \leq m$ with n close to m than those with $n \ll m$. The second is that in the case $m=n$, which is equivalent to solving a linear equation $A x=b$ with a nonsingular and perhaps nonsymmetric matrix A, there are many more competing iterative methods, such as $C G N, C G S, G M R E S$ than the rank-one ("RK1") method of this paper and the rank-2 methods ("RK2") of [17] that solve $A x=b$ only indirectly by solving $A^{T} A x=A^{T} b$. In all examples we take $\log _{10}\left\|r_{k}\right\|$ as measure of the accuracy.

EXAMPLE 5.1. Here we use that the algorithm of this paper is defined also for complex matrices A. As in [17] we consider rectangular complex tridiagonal matrices $A=\left(a_{j k}\right) \in$ $C^{m \times n}$ that depend on two real parameters q and f and are defined by

$$
a_{j k}:=\left\{\begin{array}{cl}
1+i q, & \text { if } j=k, \\
-i f, & \text { if } k=j+1, \\
i f, & \text { if } k=j-1, \\
0, & \text { otherwise. }
\end{array}\right.
$$

In particular, we applied $R K 1$ (starting with $x_{0}:=0$ and $H_{0}:=A^{H}$) to solve the least squares problem with $m=31, n=30, q=0.1$ and $f=1$. The iteration was stopped as soon as

$$
\mathrm{re}_{k}:=\left\|r_{k}\right\|\left\|r_{0}\right\| \leq \epsilon, \quad \epsilon:=10^{-3}
$$

$R K 1$ stopped after 24 iterations. Figure 5.1 (plotting $\log _{10} \mathrm{re}_{k}$ versus k) shows the typical behavior observed with $c g$-type methods (cf. Theorem 4.1).

At termination, $R K 1$ produced only an approximation H^{*} of the pseudoinverse of A, since $R K 1$ stopped already after $24<30=n$ iterations. When $H_{0}:=H^{*}$ was then used to solve by $R K 1$ the system $A x=b^{\prime}$ with a new right-hand side $b^{\prime} \neq b$ (but the same starting vector $x_{0}=0$ and precision $\epsilon=10^{-3}$), RK1 already stopped after 9 iterations (see the plot of Figure 5.2).

Other choices of the parameters q and f lead to least squares systems $A x=b$, where $R K 1$ (started with $H_{0}:=A^{T}$) did not stop prematurely: it needed n iterations and thus terminated with a final H^{*} very close to A^{+}. Not surprisingly, $R K 1$ (started with $H_{0}:=H^{*}$) then needed only one iteration to solve the system $A x=b^{\prime}$ with a different right-hand side $b^{\prime} \neq b$. .

Fig. 5.1. No preconditioning

FIG. 5.2. With preconditioning

The test results of [17] for $R K 2$ were similar. Since $R K 1$ needs only half the storage and number of operations as $R K 2, R K 1$ is preferable.

Example 5.2. This major example refers to solving square systems $A x=b_{i}, i=$ $1,2, \ldots$, with many right hand sides b_{i}. It illustrates the use of the final matrices $H^{(i)}$ produced by $R K 1$ when solving $A x=b_{i}$ as starting matrix $H_{0}:=H^{(i)}$ of $R K 1$ for solving $A x=b_{i+1}$.

We consider the same evolution equation as in [17],

$$
u_{t}+a \cdot u_{x}+b \cdot u_{y}=u_{x x}+u_{y y}+f(x, y, t), \quad 0 \leq t \leq T, \quad 0 \leq x, y \leq 1
$$

where

$$
f(x, y, t):=e^{-\lambda t}\left[\left(-\lambda+2 \pi^{2}\right) \sin \pi x \sin \pi y+\pi(a \cos \pi x \sin \pi y+b \sin \pi x \cos \pi y)\right]
$$

with the initial and boundary conditions

$$
\begin{aligned}
& u(x, y, 0)=\sin \pi x \sin \pi y, \quad 0 \leq x, y \leq 1, \\
& u(x, y, t)=0, \quad \text { for } t>0,(x, y) \in \partial[0,1] \times[0,1] .
\end{aligned}
$$

Its exact solution is

$$
u(x, y, t)=e^{-\lambda t} \sin \pi x \sin \pi y
$$

The space-time domain is discretized by a grid with space step $\Delta x=\Delta y=h=1 / N$ and time step $\Delta t=\tau>0$. Let us denote the discretized solution at time level $n \tau$ by U, and at level $(n+1) \tau$ by V. Application of the Crank-Nicolson technique using central differences to approximate the first order derivatives and the standard second order differences to approximate the second derivatives yields the following scheme (we use the abbreviations $\left.\beta:=\tau /\left(2 h^{2}\right), \gamma:=\tau /(4 h)\right)$ for the transition $U \rightarrow V:$

$$
\begin{aligned}
& (1+4 \beta) V_{i j}+V_{i+1, j}(a \gamma-\beta)+V_{i-1, j}(-a \gamma-\beta)+V_{i, j+1}(b \gamma-\beta)+ \\
& \quad+V_{i, j-1}(-b \gamma-\beta)= \\
& =(1-4 \beta) U_{i j}+U_{i+1, j}(-a \gamma+\beta)+U_{i-1, j}(a \gamma+\beta)+U_{i, j+1}(-b \gamma+\beta)+ \\
& \quad+U_{i, j-1}(b \gamma+\beta)+\frac{1}{2}[f(i h, j h,(n+1) \tau)+f(i h, j h, n \tau)]
\end{aligned}
$$

where $2 \leq i, j \leq N-1$. This scheme is known to be stable and of order $O\left(\tau^{2}, h^{2}\right)$. V is obtained form U by solving a linear system of equations $A V=C(U)$ with a nonsymmetric penta-diagonal matrix A and a right hand side $C(U)$ depending linearly on U. This linear system may be solved directly by using an appropriate modification of Gauss elimination. However, to demonstrate the use of our updates, we solve these equations for given U iteratively starting for the first time step with $H_{0}:=A^{T}$. For the next time steps, we compare the results for the rank-two method in [17] with the rank-one method of this paper.

For $N=35$ (corresponding to more than 1000 unknowns at each time level) and $\Delta t=$ $\tau=0.01, a=10, b=20, \lambda=1$ the solution of the problem up to the time $t=5 \times \Delta t$ requires the following numbers of iterations in order to achieve a relative residual norm $<$ 0.0001:

RK1:	158	123	98	91	62
RK2:	158	123	109	87	74

These results show a comparable number of iterations for both methods. But again, the storage and the number of operations for $R K 1$ is half that required for $R K 2$.

The next examples also refer to the solution of systems $A x=b$ with a square nonsingular $n \times n$-matrix A. Here we follow the ideas of Nachtigal et al. in [19], who compared three main iterative methods for the solution of such systems. These are $C G N, G M R E S$ and $C G S$. Examples of matrices were given for which each method outperforms the others by a factor of size $O(\sqrt{n})$ or even $O(n)$. These examples are used to compare our algorithm ("RK1") with these three methods. In all examples $n=40$, except Examples 5.3 and 5.6, where $n=400$. We take $\log _{10}\left\|r_{k}\right\|$ as a measure of the accuracy. Note that $R K 1$ solves $A x=b$ only indirectly via the equivalent system $A^{T} A x=A^{T} b$..

EXAMPLE 5.3. In this example all methods make only negligible progress until step n. Here

$$
A:=\operatorname{diag}\left(1,4,9, \ldots, n^{2}\right)
$$

is diagonal but represents a normal matrix with troublesome eigenvalues and singular values. The results show that both $G M R E S$ and $R K 1$ are leading.

Example 5.4. This is an example where both $C G N$ and $R K 1$ are leading. Here A is
taken as the unitary $n \times n$-matrix

$$
A:=\left[\begin{array}{lllll}
0 & 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1 \\
1 & & & & 0
\end{array}\right]
$$

Example 5.5. Here

$$
A:=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

where $\left\{d_{j}\right\}$ denote the set of Chebyshev points scaled to the interval $[1, \kappa]$, where

$$
\begin{aligned}
e_{j} & :=\cos \frac{(j-1) \pi}{n-1} \\
d_{j} & :=1+\left(e_{j}+1\right)(\kappa-1) / 2 \\
\kappa & :=\left(\frac{1+\varepsilon^{1 /(2 \sqrt{n})}}{1-\varepsilon^{1 /(2 \sqrt{n})}}\right)^{2}, \quad \varepsilon=10^{-10}
\end{aligned}
$$

A has condition number $O(n)$ and smoothly distributed entries. In this example $C G S$ wins and both $C G N$ and $R K 1$ are bad.

Example 5.6. Here A is the block diagonal matrix

$$
A:=\left[\begin{array}{llll}
M_{1} & & & \\
& M_{2} & & \\
& & \ddots & \\
& & & M_{n / 2}
\end{array}\right]
$$

with

$$
M_{j}:=\left[\begin{array}{cc}
1 & j-1 \\
0 & 1
\end{array}\right], \quad j=1,2, \ldots, n / 2
$$

which ensures a bad distribution of singular values. Here both $C G S$ and $G M R E S$ are leading, but $R K 1$ outperforms $C G N$.

Example 5.7. A is chosen as in Example 5.6, but with

$$
M_{j}:=\left[\begin{array}{cc}
1 & j-1 \\
0 & -1
\end{array}\right], \quad j=1,2, \ldots, n / 2
$$

This choice of M_{j} causes failure of $C G S$ in the very first step. $G M R E S$ is leading and $R K 1$ outperforms $C G N$.

Example 5.8. A is taken as in Example 5.6, but with

$$
M_{j}:=\left[\begin{array}{cc}
e_{j} & \gamma_{j} \\
0 & \kappa / e_{j}
\end{array}\right]
$$

where $\gamma_{j}:=\left(\kappa^{2}+1-e_{j}^{2}-\kappa^{2} / e_{j}^{2}\right)^{1 / 2}$ and e_{j} and κ are defined as in Example 5.3. This leads to fixed singular values and varying eigenvalues.
Here $R K 1$ and $C G N$ lead and both are much better than $C G S$ and $G M R E S$.
Example 5.9. A is taken as in Example 5.6, but with

$$
M_{j}:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

This matrix is normal and has eigenvalues $\pm i$ and singular value 1 . Here both $R K 1$ and $C G N$ require only one iteration, $G M R E S$ requires two while $C G S$ fails.

The numerical results for Examples 5.1-5.7 are summarized in the next table listing the number of iterations needed for convergence (tested by $\log _{10}\left\|r_{k}\right\| \leq-10$). The number of iterations was limited to 50 , and if a method failed to converge within this limit then the final accuracy is given by the number following \backslash, e.g., $\backslash e-2$ indicates that the final accuracy was $\left\|r_{50}\right\| \approx 10^{-2}$.

Example	CGN	CGS	GMRES	RK1
5.1	$\backslash \mathrm{e}-6$	$\backslash \mathrm{e}-0$	40	40
5.2	1	40	40	1
5.3	$\backslash \mathrm{e}-4$	20	38	50
5.4	$\backslash \mathrm{e}-2$	2	2	40
5.5	$\backslash \mathrm{e}-2$	Fails	3	40
5.6	2	20	38	2
5.7	1	Fails	2	1

We note that the residuals $\left\|r_{k}\right\|$ behave erratically for $C G N$. Its performance may be improved if one uses $\bar{r}_{0}:=A^{T} r_{0}$ rather than $\bar{r}_{0}:=r_{0}$ as taken in [19]. $R K 1$ has common features with $C G N$: both perform excellently in Examples 5.2, 5.6 and 5.7, but $R K 1$ avoids the bad performance of $C G N$ in Examples 5.4, 5.5. RK1 never exceeded the maximum number of iterations.

No preconditioning was tried. It is obvious that if Examples 5.1 and 5.3 are scaled (to achieve a unit diagonal), one reaches the solution immediately within one iteration.

The comparison between these methods may include the number of matrix vector multiplications, of arithmetical operations, storage requirements and general rates of convergence. However, we chose only the number of iterations and the reduction of the norm of the residual as in [19] as indicators of performance. After comparing different iterative algorithms, Nachtigal et al. [19] concluded that it is always possible to find particular examples where one method performs better than others: There is not yet a universal iterative solver which is optimal for all problems.
6. Implementational issues and further discussion. There are several ways to realize the Algorithm. We assume that $H_{0}=A^{T}$ and that A is sparse, but $H_{k}(k>0)$ is not. Then a direct realization of the Algorithm requires storage of a matrix $H \in R^{n \times m}$, and in each iteration, computation of 2 new matrix-vector products of the type $H_{k} w$ (neglecting products with the sparse matrices A and $H_{0}=A^{T}$) and updating of H_{k} to H_{k+1} by means of the dyadic product $u_{k} v_{k}^{T} \in R^{n \times m}$ in Step 4 of the Algorithm. This requires essentially $3 n m$ arithmetic operations (1 operation $=1$ multiplication +1 addition).

The arithmetic expense can be reduced by using the fact that any H_{k} has the form $H_{k}=$ $U_{k} A^{T}$ (see Propositon 2.3), where $U_{k} \in R^{n \times n}$ is updated by

$$
U_{k+1}=\gamma_{k} U_{k}+u_{k} u_{k}^{T} /\left(A u_{k}, z_{k}\right)
$$

and each product $H_{k} w$ is computed as $U_{k}\left(A^{T} w\right)$. This scheme requires storage space for a matrix $U \in R^{n \times n}$ and only $3 n^{2}$ operations/iteration, which is much less than $3 n m$ if $n \ll m$.

Finally, if the Algorithm needs only few iterations, say at most $k \ll n$, one may store only one set of vectors $u_{i}, i \leq k$, explicitly (not two as with the rival method $R K 2$ of [17]) and use the formula (supposing that $H_{0}=A^{T}$)

$$
\begin{equation*}
H_{k+1}=\gamma_{0} \gamma_{1} \cdots \gamma_{k}\left(I+\sum_{i=0}^{k} \frac{u_{i} u_{i}^{T}}{\left(A u_{i}, z_{i}\right) \gamma_{i}}\right) A^{T} \tag{6.1}
\end{equation*}
$$

when computing products like $H_{k} z_{k}$ and $H_{k+1} r_{k+1}$ in the Algorithm. Using (6.1) to compute $H_{k} w$ requires essentially the computation of 2 matrix-vector products of the form

$$
\bar{U}_{k}^{T} p, \quad \bar{U}_{k} q
$$

with the matrix

$$
\bar{U}_{k}:=\left[u_{0}, \ldots, u_{k-1}\right] \in R^{n \times k},
$$

which requires $2 k n$ operations to compute a product $H_{k} w$. This again is half the number of operations as for the rank-2 methods in [17].

Our new update is connected to the previous one in the same way the SRK1 update is related to the DFP-update as shown by Fletcher [9] and Brodlie et al. [2]. We may define general updating expressions by

$$
H_{k+1}=\gamma H_{k}+u_{k}\left(S u_{k}\right)^{T} /\left(S u_{k}, z_{k}\right) .
$$

This encompasses the case when A is s.p.d., which requires $S=I$ and $H_{0}=I$, as well as the more general case in which $S=A$: this would require $H_{0}=A^{T}$ or a better starting matrix, which secures that $A H_{0}$ is s.p.d. .

An alternative procedure is to update both H_{k} and the matrices $D_{k}:=A H_{k}$ using

$$
D_{k}^{*}=D_{k}+v_{k} v_{k}^{T} /\left(v_{k}, z_{k}\right)
$$

This allows us to monitor the accuracy of the approximate inverse H_{k} by checking the size of $D_{k}-I$. For reasons of economy, one could monitor only the diagonal or some row of D_{k}.

The algorithm may be appropriate for solving initial value problems for partial differential equations as shown for rank-two updates in [17] and, for rank-one updates, in Example 5.2. In such problems, we start with the given initial value and iterate to find the solution for the next time level. The solution is considered to be acceptable if its accuracy is comparable to the discretization error of the governing differential equations. The final updated estimate of the inverse obtained for the present time level is then taken as the initial estimate of the inverse for the next time step.

REFERENCES

[1] C. Brezinski, M. Redivo-Zaglia, and H. Sadok, New look-ahead Lanczos-type algorithms for linear systems, Numer. Math, 83 (1999), pp. 53-85.
[2] K. W. Brodlie, A. R. Gourlay, and J. Greenstadt, Rank-one and rank-two corrections to positive definite matrices expressed in product form, J. Inst. Math. Appl., 11 (1973), pp. 73-82.
[3] C. G Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comput., 19 (1965), pp. 577-593.
[4] C, G. Broyden, The convergence of single-rank quasi-Newton methods, Math. Comput., 24 (1970), pp. 365382.
[5] J. Abaffy, C. G Broyden, and E. Spedicato, A class of direct methods for linear systems, Numer. Math. 45 (1984), pp. 361-376.
[6] J. Y. Chen, D. R. Kincaid, And D. M. Young, Generalizations and modifications of the GMRES iterative method, Numer. Algorithms, 21 (1999), pp. 119-146.
[7] P. Deuflhard, R. Freund, and A. Walter, Fast secant methods for the iterative solution of large nonsymmetric linear systems, Impact Comput. Sci. Eng., 2 (1990), pp. 244-276
[8] T. Eirola and O. Nevanlinna, Accelerating with rank-one updates, Linear Algebra Appl., 121 (1989), pp. 511-520.
[9] R. FLETCHER, A new approach to variable metric algorithms, Computer J., 13 (1970), pp. 317-322.
[10] D. M. GAY, Some convergence properties of Broyden's method, SIAM J. Numer. Anal., 16 (1979), pp. 623630.
[11] D. M. Gay and R. B. Schnabel, Solving systems of nonlinear equations by Broyden's method with projected updates, in Nonlinear Programming, O. L. Mangasarian, R. R. Mayer, and S. M. Robinson, eds., Academic Press, New York, 1973, pp. 245-281.
[12] R. R. Gerber and F. J. Luk, A generalized Broyden's method for solving simultaneous linear equations, SIAM J. Numer. Anal., 18 (1981), pp. 882-890.
[13] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.
[14] I. ICHIM, A new solution for the least squares problem, Int. J. Computer Math., 72 (1999), pp 207-222.
[15] C. M. Ip AND M. J. Todd, Optimal conditioning and convergence in rank one quasi-Newton updates, SIAM J. Numer. Anal., 25 (1988), pp. 206-221.
[16] H. Kleinmichel, Quasi-Newton Verfahren vom Rang-Eins-Typ zur Lösung unrestringierter Minimierungsprobleme, Teil 1. Verfahren und grundlegende Eigenschaften, Numer. Math., 38 (1981), pp. 219-228.
[17] A. MOHSEN AND J. STOER, A variable metric method for approximating inverses of matrices, ZAMM, 81 (2001), pp. 435-446.
[18] J. J. Moré and J. A. Trangenstein, On the global convergence of Broyden's method, Math. Comput., 30 (1976), pp. 523-540.
[19] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778-795.
[20] S. S. Oren and E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms, Math. Program., 10 (1976), pp. 70-90.
[21] J. D. Pearson, Variable metric methods of minimization, Comput. J., 12 (1969), pp. 171-178.
[22] M. J. D. Powell, Rank one method for unconstrained optimization, in Integer and Nonlinear Programming, J. Abadie, ed., North Holland, Amsterdam, 1970, pp. 139-156.
[23] Y. SAAD AND H. A VAN DER Vorst, Iterative solution of linear systems in the 20th century, J. Comput. Appl. Math., 123 (2000), pp. 1-33.
[24] E. Spedicato, A class of rank-one positive definite quasi-Newton updates for unconstrained minimization, Optimization, 14 (1983), pp. 61-70.
[25] E. Spedicato, M. Bonomi, and A. Del Popolo, ABS solution of normal equations of second type and application to the primal-dual interior point method for linear programming, Technical report, Department of Mathematics, University of Bergamo, Bergamo, Italy, 2007.

[^0]: *Received October 9, 2006. Accepted for publication September 3, 2007. Published online May 19, 2008. Recommended by M. Hochbruck.
 ${ }^{\dagger}$ Department of Engineering Mathematics and Physics, Cairo University, Giza 12211, Egypt
 (amohsen@eng.cu.edu.eg). The work of this author was supported by the Alexander von Humboldt Stiftung, Germany.
 ${ }^{\ddagger}$ Institut für Mathematik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
 (jstoer@mathematik.uni-wuerzburg.de).

