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FAST MULTILEVEL EVALUATION OF SMOOTH RADIAL BASIS FUNCTION
EXPANSIONS

�
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Abstract. Radial basis functions (RBFs) are a powerful tool for interpolating/approximating multidimensional
scattered data. Notwithstanding, RBFs pose computational challenges, such as the efficient evaluation of an � -center
RBF expansion at � points. A direct summation requires �����	��
 operations. We present a new multilevel method
whose cost is only �����������
������������
���
 , where � is the desired accuracy and � is the dimension. The method
applies to smooth radial kernels, e.g., Gaussian, multiquadric, or inverse multiquadric. We present numerical results,
discuss generalizations, and compare our method to other fast RBF evaluation methods. This multilevel summation
algorithm can be also applied beyond RBFs, to discrete integral transform evaluation, Gaussian filtering and de-
blurring of images, and particle force summation.
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1. Introduction. In many science and engineering disciplines we need to interpolate or
approximate a function �! 	"$#&%'"�(�)�*,+ from a discrete set of scattered samples. Radial
basis functions (RBFs) are a simple and powerful technique for solving this problem, with
applications to cartography [31], neural networks [27], geophysics [9, 10], pattern recogni-
tion [41], graphics and imaging [16, 17, 44], and the numerical solution of partial differential
equations [33, 34].

The basic RBF approximation to �.-/10 is given by the expansion

(1.1) 2	-/1043 567�8:91; -�< 7 0>=?-A@B/�C!< 7 @D0E(
where boldface symbols are in " # , @GF�@ denotes the ) -dimensional Euclidean norm, HI< 7�J 57�8:9
are called centers, ; -�< 7 0 are the expansion coefficients, and = is a univariate, radially sym-
metric kernel. Given data � 7 3K�.-�< 7 0 , L?3NMO(D+�(DPIPDPB(�Q , the expansion coefficients are chosen
to satisfy the interpolation conditions 2	-�< 7 0R3S� 7 , LT3UMO(D+�(DPIPDPB(�Q , or in matrix notation, to
solve

(1.2)

VWYX Z[\VW�]^Z[ 3 VW>_`Z[ ( where

X�ab 7 3c=?-A@B< a C!< 7 @D0EP
More generally, one can choose more data than centers and solve the corresponding overde-
termined system for

]
[15, Ch. 8]. Some common choices of = are listed in Table 1.1. The

well-posedness of (1.2) is discussed in [18, Ch. 12–16].
Although RBFs have been effectively applied to many applications, their wider adoption

has been hindered by a prohibitively high, non-scalable computational cost, mainly stemming
from the infinite support of the commonly used radial kernels [25]. The two main computa-
tional challenges of RBFs ared
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TABLE 1.1
Some commonly used radial basis functions. In all cases, e$fhg .

Type of Radial Kernel =^-�i�0
Smooth Kernels
Gaussian (GA) j	k1lnm�o�p�q
Generalized multiquadric (GMQ) -r+tsc-vuwi�0>xy0>zI{Ax , |~}3cM and |�}������ Multiquadric (MQ) ->+tsN-�uyi�0>xy0���{Ax� Inverse multiquadric (IMQ) -r+tsc-vuwi�0>xy0�k��>{Ax� Inverse quadratic (IQ) -r+tsc-vuwi�0>xy0�k��
Piecewise Smooth Kernels
Generalized Duchon spline (GDS) i�xA�^����i , � ���iwxAz , |���M and |�}���
Matérn

� �`k�z� -�|�0 i�z�� z -�i�0 , |���M
Wendland [43] -r+�C!i�0>��:� -�i�0 , � 3 polynomial, � ���
Oscillatory Kernels

J-Bessel (JB) [24] = # -�i�043����q��	� lnm>oAplnm�o�p � q �	� , )?3,+�( � (DPDPIP
(A) Fitting: Given HD< 7�J 57�8�9 and Hw� 7�J 57�8:9 , determine the expansion coefficients H ; -�< 7 0 J 57�8�9 .

Because

X
in (1.2) is a dense -�Q&s�+�0 -by- -Q�s�+y0 symmetric matrix, standard direct

solvers require ��-Q1 �0 operations.
(B) Evaluation: Given HI< 7�J 57�8:9 and H ; -�< 7 0 J 57�8:9 , evaluate the RBF interpolant (1.1) at

multiple points /!3K/ a , ¡43¢MO(D+�(DPIPDP`(>£ . The cost of direct summation of (1.1) for
all / a is ��-�£�Q10 .

In practice, it is sufficient to solve (A) and (B) up to some specified error tolerance. A few
Krylov-subspace iterative methods have been developed for (A) [2, 3, 21, 22, 23]. These
algorithms require the ability to efficiently multiply

X
by a vector. Thus, overcoming (B) is

also important to overcoming (A).
In this paper we develop a fast multilevel evaluation algorithm for reducing the compu-

tational cost of (B) to ��->-�£¤s¥Q10B-���^-r+w¦w§�0>0 # 0 operations, where § is the desired evaluation
accuracy. The method is applicable to any smooth = (e.g., Table 1.1, top section) in any
dimension ) , and to any centers HD< 7�J 57�8:9 and evaluation points HI/ a JI¨a 8:9 . The idea is that
a smooth = can be accurately represented on a coarser grid of fewer centers and evalua-
tion points, at which a direct summation of (1.1) is less expensive. This approach builds on
Brandt’s multilevel evaluation of integral transforms [11]; because of the smoothness of = ,
our method only requires two levels.

Alternative fast RBF expansion methods are:� Fast Multipole Method (FMM). Beatson and Newsam [7] originally developed an
FMM for evaluating RBF expansions with the �©3¤+ GDS kernel (see Table 1.1).
More recently, Beatson and colleagues have extended the FMM to other radial ker-
nels [4, 5, 6, 7, 19]. The evaluation complexity is ��-�-�£�s�Q10B-���ªQ10B-����1->+y¦w§�0�0 # � �B0 ,
where § is the desired accuracy. While these methods have been successful in ap-
plications [9, 10, 17], they are rather complicated to program – especially in higher
dimensions, because of the complex hierarchical structure and tree codes required to
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decompose = into “near field” and “far field” components [15, « 7.3]. Additionally,
a different set of Laurent and Taylor coefficients must be determined for each new
radial kernel and dimension ) .� Fast Gauss Transform (FGT). Roussos and Baxter [38, 39] adapted the Fast Gauss
Transform (FGT) of Greengard and Strain [30] to RBF evaluation. Exploiting the
conditionally positive (negative) definite properties of certain radial kernels, (1.1)
is replaced by the evaluation of (1.1) with the GA kernel using FGT, followed by
an appropriate Gaussian quadrature rule for translating the GA result back to the
original kernel. The algorithm’s cost is ��-£¥s&Q10 , where the constant increases with
the desired accuracy and dimension. FGT is non-hierarchical and parallelizable, but
it is hard to precisely control the evaluation error due to the complicated quadrature
rules.

The main advantages of our method include:
(i) Its implementation is simple and easily parallelizable for all smooth kernels = in any

dimension ) .
(ii) The evaluation error of the method normally depends only simple bounds on the

derivatives of =^-�i�0 at iN3¬M (such bounds for many useful kernels are given in
Appendix B).

(iii) The accuracy and complexity of any fast evaluation method must depend on = and
thus on the “shape parameter” u . In practice, u is required to grow with Q to avoid
severe numerical ill-conditioning of the linear system (1.2) for computing the ex-
pansion coefficients [40]. Unlike the FMM and FGT methods, we explicitly include
the shape parameter u in our algorithm’s analysis. Therefore, we are able to provide
precise user control over the evaluation error and precise asymptotic results on the
complexity.

Unlike the FMM, our method is presently limited to smooth radial kernels. Its generalization
to piecewise-smooth kernels like GDS is still a work-in-progress; see « 7.

Our algorithm has important applications beyond RBFs: filtering and de-blurring of im-
ages [29, pp. 165–184]; force summation among particles/atoms with smooth potential of
interactions = (e.g., [11, « 1–3]); evaluation and solution of continuous integral equations [20]

(1.3) 2�-/1043¢¯®°=^-�@B/�C�<t@I0 ; -�<±0>)�<¥(
discretized on the centers HI< 7�J 57�8:9 and evaluation points HI/ a J ¨a 8:9 ; and so on.

The paper is organized as follows: In « 2 we derive our fast evaluation algorithm in 1-
D for any smooth kernel. We apply this general algorithm to specific smooth kernels from
Table 1.1 and show numerical results in « 3. The generalization of the algorithm to )¥�¤+
dimensions is described in « 4, followed by application of the ) -dimensional algorithm to
specific smooth kernels in « 5. In « 6, we present several numerical results in two and three
dimensions. We discuss future research in « 7.

2. 1-D fast evaluation algorithm. Let = be a smooth radial kernel (see Table 1.1, top
section), and HI² 7wJ 57�8�9 (BHI³ a J ¨a 8:9�´ " . Without loss of generality, we assume that the centersHD² 7�J 57�8:9 and the evaluation points HD³ a J ¨a 8:9 lie in µ MO(I+B¶ and are sorted so that ² 7¸· ² 7 � � ,LN3¹M�(D+�(IPDPIP`(>QºC,+ , and ³ a · ³ a � � , ¡E3¹MO(I+�(IPDPDP`(�£»C,+ . We denote by “level ¼ ” the
collection of HI² 7�J 57�8:9 and HI³ a JI¨a 8�9 and make no assumption on the densities of HI² 7wJ 57�8:9 andHD³ a J�¨a 8:9 . Quantities defined at these centers and points are denoted by lowercase symbols
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y0 y1 y2 y3 y4 yn−1 yn
λ(y0) λ(y1) λ(y2)λ(y3) λ(y4) λ(yn−1)λ(yn)Level h:

Y 0 Y 1 Y 2 YN −1 YN
Λ(Y 0) Λ(Y 1) Λ(Y 2) Λ(YN −1) Λ(YN )

Level H:

FIG. 2.1. Illustration of the two-level approach for the case ½�¾N¿ . ÀAÁÃÂDÄ�ÅÂ>ÆOÇ are similarly defined overÀ�È�É�Ä�ÊÉ ÆOÇ . Level Ë contains ��� ½�
 points outside the convex hull of level Ì to allow centered interpolation.

(e.g., H ; -² 7 0 J 57�8:9 (BH�2	-³ a 0 J ¨a 8:9 ). The 1-D evaluation task is to compute

(2.1) 2	-�³ a 043 567�8:9 ; -�² 7 0�=Í-�Î ³ a C!² 7 Î 0h(!¡.3NMO(I+�(DPIPDPB(�£ÏP
We define an auxiliary “level Ð ” consisting of two uniform grids HIÑ � JIÒ� 8:9 and HIÓÕÔ JwÖÔ 8�9
with spacing Ð each. These grids cover HI² 7wJ 57�8�9 and HD³ a J ¨a 8:9 , respectively, so that a dis-
crete function defined at level Ð can be approximated at any ² 7 using centered � th-order
interpolation, for some even � �T� . Specifically, we chooseÑ � 3×² 9 C - � C�+y0rÐ� s�Ø�ÐT(�ØT3cMO(I+�(IPDPDP`(AÙT(ÚÙÏ3ÜÛ ² 5 C!² 9Ð C!M�P ÝwÞ�s � (Ó�Ô�3×³ 9 C - � C¥+�0rÐ� s¸ß�Ðà(!ß?3cMO(I+�(IPDPDP`(�á¢(Yáâ3 Û ³ ¨ C!³ 9Ð C!M�P Ý Þ s � P
Quantities defined at level Ð are denoted by uppercase symbols (e.g., HyãR-�Ñ � 0 JyÒ� 8:9 , Hwä�-�ÓÕÔI0 JyÖÔ 8:9 );see Fig. 2.1. Level Ð is coarser than, and at most comparable with level ¼ ; ÐT( � are deter-
mined by the shape parameter u of = and the target accuracy § in Hy2	-�³ a 0 J ¨a 8:9 (see « 2.1, « 3).
The evaluation algorithm replaces the expensive summation (2.1) at level ¼ by a less expen-
sive summation at level Ð by utilizing the spatial smoothness of = . First, =^-�Î ³ a C¥²�Î 0 is a
smooth function of ² , for every fixed ³ a . Therefore its value at ²�3¢² 7 can be approximated
by a centered � th-order interpolation from its values at neighboring Ñ � ’s. Namely,

(2.2) =?-�Î ³ a C�² 7 Î 0$3 6�¯å�æIç¯è 7 � =Í-AÎ ³
a C©Ñ � Î 0Ts���-§�é:0`(TL?3cMO(D+�(DPIPDP`(>Q!(

where ê 7  ë3ìH�Ø� íÎ Ñ � C�² 7 Î · � ÐE¦ � J , è 7 � are the centered � th-order interpolation weights
from the coarse centers Ñ � to ² 7 , and §�é is the interpolation error, which we bound in « 2.1 and« 3. Substituting the approximation (2.2) into (2.1) and interchanging the order of summation,
we obtain 2	-�³ a 0t3 567�8:9 VW 6�¯å�æ ç è 7 � =Í-�Î ³

a C©Ñ � Î 0Ts���-§�é:0 Z[ ; -�² 7 03 Ò6� 8�9 =?-AÎ ³
a C!Ñ � Î 0 67�î �ïå�æDçïè 7 � ; -�² 7 0�s���-�Q4@

] @Dð�§`é�0
3 Ò6� 8�9 ã�-Ñ � 0>=?-�Î ³

a C!Ñ � Î 0Ts¸��-Q4@ ] @ ð § é 0B(�¡G3NM�(D+�(IPDPIP`(>£Ï((2.3)
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where

(2.4) ãR-�Ñ � 0� ë3 67�î �¯å�æIç è 7 � ; -�² 7 0B(�ØT3NMO(D+�(DPIPDPB(AÙT(
which is called anterpolation [11] or aggregation of H ; -² 7 0 J 57�8:9 to level Ð . The upper bound
for the total interpolation error in 2	-�³ a 0 is ��-�Q4@ ] @Dð�§`éí0 , where @ ] @Ið is the maximum norm
of H ; -�² 7 0 J 57�8:9 . In fact, if we assume that local errors accumulate randomly, the total error
will only be ��-òñ Q4@ ] @Dð�§`é�0 .

Second, we similarly use the smoothness of =^-AÎ ³àC¥Ñ � Î 0 as a function of ³ for a fixedÑ � to approximate its value at ³ó3ô³ a by a centered � th-order interpolation from its values
neighboring Ó&Ô ’s. Namely,

(2.5) =Í-AÎ ³ a C!Ñ � Î 0$3 6Ô å æwõ è
a Ô�=?-�Î ÓÕÔ�C©Ñ � Î 0Ts���-§`é�0`(!¡.3cMO(I+�(DPIPDP`(�£ÏP

where ê a  �3öH�ßÕ íÎ ÓÕÔ�C!³ a Î · � ÐE¦ � J , and è
a Ô are the centered � th-order interpolation weights

from the coarse evaluation points Ó&Ô to ³ a . Substituting (2.5) into (2.3) gives2	-³ a 0$3 Ò6� 8:9 ã�-Ñ � 0ø÷ 6Ô å æwõ è
a Ôw=?-�Î ÓÕÔÃC©Ñ � Î 0Ts¸��-�§�é�0òùhs���-�Q4@ ] @Dð�§`é�03 6Ô å æ õ è

a Ô Ò6� 8�9 ã�-Ñ � 0>=?-�Î ÓÕÔ�C©Ñ � Î 0Ts���-�Q4@
] @Dð�§`éí03 6Ô å æ õ è

a ÔyäÃ-�ÓÕÔI0Ts���-�Q4@ ] @Dð�§�éí0B(©¡^3NM�(D+�(DPDPIPB(>£¤((2.6)

where

(2.7) ä�-�ÓÕÔy0� ë3 Ò6� 8:9 ã�-Ñ � 0�=Í-�Î ÓÕÔ�C©Ñ � Î 0�($ß?3×M�(D+�(DPDPIPB(AáÚP
For fast-decaying = (e.g. GA),(2.7) can be truncated to a neighborhood of Ó Ô and replaced
by

(2.8) ä�-ÓÕÔy0$3 6� î�ú ûwü kíý.þ ú ÿ���� ãR-�Ñ � 0>=?-�Î ÓÕÔ�C©Ñ � Î 01s���-�Q4@
] @Dð�§��40`(©ß?3cMO(I+�(DPIPDPB(�á (

where � ��� and the truncation error § � depends on = and � . If = does not decay fast (or at
all) as i�%�� (e.g. IMQ and MQ), we resort to �Ã3NÙ (i.e. no truncation).

Thus, the original evaluation task (2.1) is replaced by the less expensive, analogous evalu-
ation task (2.8) at level Ð . Assuming (2.8) is directly summed, we can reconstruct H�2	-³ a 0 J�¨a 8:9
by interpolating Hyä�-Ó Ô 0 J ÖÔ 8�9 back to level ¼ , namely, computing (2.6). Summarizing, our
fast evaluation task consists of the following steps:

1. Anterpolation: for every L?3cMO(D+�(DPIPDPB(�Q , compute the anterpolation weights H è 7 � J �ïå�æDç .Compute the coarse expansion coefficients HIã�-Ñ � 0 JIÒ� 8:9 using (2.4).
2. Coarse Level Summation: evaluate ä�-�Ó Ô 0`(.ß?3NM�(D+�(DPDPIP`(Aá using (2.8).
3. Interpolation: for every ¡.3cMO(I+�(IPDPDP`(�£ , compute the interpolation weights H è

a Ô J Ô å æ õ .Then interpolate Hwä�-�Ó&ÔI0 J ÖÔ 8:9 to Hy2	-�³ a 0 J ¨a 8:9 using (2.6).
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2.1. Complexity and accuracy. Step 1 consists of two parts. Computing the weightsH è 7 � J � requires ��- � Q10 operations (see Appendix A). Then (2.4) is executed in ��- � Q10 op-
erations (see « 2.2). The truncated coarse sum in step 2 requires ��-	�Dá,0 operations. In some
cases, this cost can be cut using the Fast Fourier Transform (FFT) as discussed below. Step
3 consists of computing H è

a Ô J Ô , which costs ��- � £T0 , and interpolating the level Ð RBF
expansion to level ¼ for a cost of ��- � £T0 . The algorithm’s complexity is thus

(2.9) 
��,-�Qhsº£�0 � s �Ð P
Because the coarse grid interpolations are centered and � is even, the error § é can be

bounded by [42, p. 32]§`éE3  =?-�Î ³ a C�² 7 Î 0.C 6�¯å�æ ç¯è 7 � =Í-AÎ ³
a C©Ñ � Î 0  � Ð���� ��� � � �x ��� x��� �  = l � p -�³ a C���0  (

where � is in the convex hull of HyÑ � J �ïå�æDç , L�3NM�(D+�(IPDPIP`(>Q . For infinitely smooth = we obtain
the uniform bound §`é � Ð ��� � � � � �x ��� x��� � ��� = l � p ��� ð P
The truncation error §�� in ä�-�ÓÕÔy0 due to (2.8) is bounded by the “tail” of = . For every ß ,§ � �  ý.þDk ���k ð Î =±-AÎ Ñ C�Ó Ô Î 0IÎ )íÑcs  ðý þ � ��� Î =^-AÎ Ñ,C!Ó Ô Î 0DÎ ) ÑU3 �  ð��� Î =^-�i�0IÎ )�iwP

Let  contain the values from directly summing (2.1) and ! the contain the values from
our fast evaluation for ¡G3×MO(I+�(IPDPDPD(>£ . We define the evaluation accuracy as the relative error
norm

(2.10) "S �3 @# �C$! ¯@Dð@� ¯@Dð P
Using the bounds on § é and § � , we obtain

(2.11) "%�'& ( Ð ��� � � � � �x ��� x��� � ��� = l � p ��� ð s �  ð��� @I=±-i�0D@B)�i*)N(
where &  �3ÜQ4@ ] @Dð&¦�@� ¯@Dð is a measure of the condition number of the direct evaluation
problem (2.1) (see the paragraph below). The algorithm’s efficiency is determined by choos-
ing the parameters ÐT( � (+� to minimize 
 for a bounded accuracy " � § (or minimize "
subject to bounded 
 ). An exact optimization is of course not required. The algorithm’s
efficiency depends only on = , not on the specific locations HI² 7 J 57�8:9 (DHD³ a J ¨a 8:9 or the valuesH ; -�² 7 0 J 57�8�9 . In « 3 we show for a few specific RBFs that by correctly choosing the param-
eters (normally � �,�-�\���±-r+y¦�§�0 ), the algorithm scales linearly with Q�s×£ with constant�N���1->+y¦�§�0 .

We conclude this section with a note on the condition number & of (2.1). From [32], we
know that if (2.1) is summed directly with precision . , then relative errors in  of size &/.
would be introduced. For example, if .�3 +�M�k:�10 , @ ] @IðÜ3\��->+IM32I0 , and H ; -² 7 0 J 57�8�9 have
alternating signs so that @� ¯@Ið 3 ��-r+y0 (as is often the case in RBF approximations), then&/.©3S��-r+�M42�.:0ª3S��-r+�Mïk�2I0 . This error analysis also holds true for any indirect summation
method of (2.1) (e.g. FMM, FGT, or the current approach). Similar to these other fast evalu-
tion methods, we hereafter assume that the condition number & is not too large, otherwise §�é ,§5� should be much smaller than § to achieve " � § .
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2.2. Fast update; parallelization. Interpolation. Note that each 2�-³ a 0`(í¡.3cMO(I+�(DPIPDP`(�£ ,
in step 3 can be independently interpolated from H�äÃ-�Ó Ô 0 J ÖÔ 8�9 . Hence, evaluating at a new
point ³ costs ��- � 0?3���-����±->+y¦w§�0�0 operations, without repeating or updating steps 1 and 2.
Most likely, new evaluation points lie in the convex hull of H�Ñ � J Ò � 8�9 and thus of HIÓ Ô J ÖÔ 8:9 .
However, if ³ cannot be centrally interpolated from existing HDÓ Ô JwÖÔ 8:9 , we append the coarse
grid with at most � new Ó Ô ’s near ³ . The coarse summation (2.7) is then performed for the
new Ó Ô ’s and 2	-³ a 0 is centrally interpolated from these äÃ-�Ó Ô 0 . This update requires ��- � Ù~0
operations, which for some cases may be ��-rñ Q����1->+y¦w§�0�0 (see « 3); further evaluations inside
the convex hull of the extended coarse grid cost only ��-����±->+y¦w§�0�0 per new evaluation point.

Anterpolation. Adjointly to interpolation, we implement anterpolation in our code as
follows. First, all H�ãR-�Ñ � 0 J Ò � 8�9 are set to zero. For each L!3 MO(I+�(DPIPDPB(�Q we increment the
coarse expansion coefficients which include ; -�² 7 0 in their sum (2.4); namely,

(2.12) ã�-Ñ � 076hC�ãR-�Ñ � 01s è 7 � ; -�² 7 0B(98±Ø � ê 7 P
This computation may be interpreted as distributing ; -�² 7 0 between several neighboring coarse
centers, as illustrated in Fig. 2.2. A new center ² can now be accommodated by incrementing

λ(y j−2 ) λ(y j−1 ) λ(y j) λ(y j+1) λ(y j+2)

Λ (Y J −1 ) Λ (Y J) Λ (Y J +1) Λ (Y J +2)

ωjJ −1 ωjJ ωjJ +1 ωjJ +2

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

FIG. 2.2. Anterpolation can be interpreted as distributing each :ï�<;>=�
 between several neighboring coarse
centers ?3@ . The Figure depicts an example for ½Ã¾BA .
few ã�-Ñ � 0 ’s neighboring ² by (2.12) ( ��- � 0 operations), updating the coarse sums (2.7) for
all Ó Ô ’s ( ��- � Ù~0 operations), and interpolating ( ��- � £T0 operations), a total of ��- � -�£Us�Ù~0�0
operations. Note that if we want to update the interpolant 2	-�³ a 0 only for some ³ a near ² ,
we need update only ��- � 0 relevant ä�-Ó Ô 0 with Ó Ô near ³ a , hence the cost of this update is
only ��- � x�0 . For ² outside the convex hull of H�Ñ � J Ò � 8:9 , use a grid extension as in the previ-
ous paragraph. This complexity analysis also applies to removing a center ² 7 from the RBF
interpolant.

Parallelization. The fast evaluation algorithm readily lends itself to distributed archi-
tectures. Anterpolation of each ; -�² 7 0 to the coarse lattice can be done independently of the
others, however, multiple L ’s may require conflicting access to the same coarse data (all ² 7 ’s
with Ø � ê 7 would like to add their contributions to ãR-�Ñ � 0 ). A domain decomposition ap-
proach in which each processor is assigned a contiguous sub-domain of the centers HI² 7wJ 57�8:9
to work on, will resolve such conflicts. Similar ideas can be applied to the coarse level sum-
mation and interpolation steps.

2.3. Fast coarse level summation. In cases where the evaluation points H�³ a J ¨a 8:9 are
not far outside the convex hull of the centers H�² 7wJ 57�8:9 , and vice versa, the coarse evaluation
points can be set equal to the coarse centers, viz. á 3¤Ù , Ó � 3 Ñ � , Øö3¤MO(D+�(DPIPDP`(�Ù .
The coarse level summation (2.7) then amounts to a matrix vector product similar to (1.2),
where

X
is now an ÙDC¸Ù symmetric Toeplitz matrix. Thus, (2.7) can be computed in��-Ùö���ÃÙ~0 operations using the FFT [28, pp. 201–202]. This approach is especially attractive
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for reducing the ��-Ù~xy0 complexity of a non-truncated coarse level summation (i.e �Í3SÙ )
for a large enough Ù . The complexity of the algorithm thus becomes
9� -�Qhsº£�0 � s +ÐFEHG �HIJ�w(���� +ÐLK (
which scales linearly with Q and £ .

3. Examples of 1-D evaluation.

3.1. GA kernel. Let =^-�i�0t3Nj�k±lnm>oAp q . Then��� = l � p ��� ð 3×u � ���- � ¦ � 0 � (
(see (B.2) of Appendix B with )T3�+ ). In addition, = exponentially decays at iE%9� , and
the “tail” is bounded by [1, p. 298]

(3.1)  ð��� j kím>q>oAq )�i � j k1l ��� m>p�qu P
Using (3.1) and Stirling’s asymptotic formula [1, p. 257]

(3.2)
� -NMPO�s$QB07� ñ � � j kSRUT -NMVO	0 RUT ��W k:��{�x

in (2.11), we obtain the accuracy estimate (keeping only the main terms)"%�YX �ñ �ï�[Z X ÐTu ñ �ñ � j Z � s � j�k1l ��� m>p�qu \ X Ð�u ñ �ñ � j Z � s j�k1l ��� m>pqu P
The first term in " can be bounded by § only if we require Ð�u ñ � · Q ñ � j for some M · Q ·+ , and � 3K��-����±->+y¦w§�0�0 . Thus, ÐY� +u ñ � ((3.3) � ����� +§ P(3.4)

In practice, � is rounded to the next even integer. The second term is bounded by ��-�§�0 if��� +u C�-	�BÐ�u�0 x \ ���Ã§ ]H^ +Ð�u XO��� +u�§ Z �q \ �w(
provided u�§ · + . 
 is minimized if and only if � is, hence we choose

(3.5) �_�`Xï��� +u�§ ��� +§ Z �q P
By selecting (3.3)–(3.5), we can evaluate (2.1) for the GA RBF in

(3.6) 
��N� ( Xï��� +§ Z -�Qhsº£�0�saXï��� +uw§ ��� +§ Z �q u )
operations. The complexity scales linearly with Q and £ for all u \ Q . If ucb Q , the
original summation (2.1) can be truncated similarly to (2.8) and directly evaluated in ��-QEs£T0 operations. Hence, the evaluation task (2.1) with the GA kernel can be carried out in��-�Qhsº£�0 operations, for all u?�¥M .
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3.1.1. Numerical experiments. We numerically verify the accuracy and work estimates
for our multilevel method derived above. In all experiments we set uº3 ñ Q±¦ed and £ 3� Q . Similar results are obtained with other QG(>£!(ru . We do not employ the FFT summation
technique of « 2.3.

To enforce § é s�§ � � § , we set the algorithm’s parameters so that § é 3c§ � 3K§�¦ � . The
work (3.6) is then minimized when ÐT( � (+� are chosen as follows:� 3 ��� xf��� � WÐÏ3 Qu X � j�gZ �q ((3.7) � 3ih#h �kj#j ((3.8) �Ã3mlno np

qsrÐ�u � ���ctm f � �q4u u · d § (M u?* d § (
where h F j denotes rounding to the next integer and h#h F j#j indicates rounding the argument to
the next even integer. We use Qª3U+w¦*d and r 3U+�P�+ ; a more precise analysis (also alleviating
the need for the deriviation (3.3)–(3.5)) could optimize Qy( r by preparing a numerical table of
the relative error " 3v"&-wQy( r 0 (measured for several different Q ’s versus a direct evaluation
of (2.1), and averaged over several random H ; -�² 7 0 J 57�8:9 ), and using Qw( r to minimize 
 under" � § . However, this hardly seems profitable, as good results are obtained for our rough
estimates for Qy( r .

First, we verify that with this choice of parameters the relative error " (2.10) is indeed��-§�0 . Table 3.1 shows the " for various values of Q and § . Each entry in the table is the
average of ten different experiments, where HD² 7�J 57�8:9 and HI³ a J�¨a 8:9 were randomly selected inµ M�(D+D¶ , and H ; -�² 7 0 J 57�8:9 randomly chosen in µ�C�+�(I+B¶ in each experiment. Clearly, " is below §
in all cases.

TABLE 3.1
Relative error x of the multilevel evaluation method for the GA, versus � and � ( ��¾�¿�� ).Q §ø3,+IMOkíx §ø3 +IMOk t §°3,+IMïk�0 §�3 +IMïk�2 §�3,+�Mïk�� 9

100 ÝïP yzdøF�+IMOk   +�P yzdøF�+�Mïk|{ }ïP�+ � F�+IMOk|2 +�P ~4døF�+IMOk|� ÝOP ��MRF�+IMOk:�>x
200 ÝïP�Ý�ÝRF�+IMOk   � P MP}ªF�+�Mïk|{ ÝOP �3��F�+IMOk|2 +�P y3��F�+IMOk|� }ïP dPyRF�+IMOk:�>x
400 yOP�Ý�M�F�+IMOk   +�P�+ � F�+�Mïk|{ ÝOP�}ï+�F�+IMOk|2 +�P � y�F�+IMOk|� ��P dP�RF�+IMOk:�>x
800 d�P � ~�F�+IM k   +�P �4��F�+�M k|{ d P �3��F�+IM k|2 +�P Ý4��F�+IM k|� d P ~�+�F�+IM k:�>x

1600 y�P�+yÝRF�+IMOk   +�P ��ÝRF�+�Mïk|{ ��P � +�F�+IMOk|2 +�P d3døF�+IMOk|� }ïP ~4d�F�+IMOk:�>x
Second, we verify that the work 
 (3.6) linearly scales with £ , Q , and ���^-r+y¦�§�0 . Table 3.2

compares the number of operations required for our multilevel method for various values ofQ and § , with a direct evaluation. Each evaluation of j¯k|� is counted as one operation. As
expected, the results follow the work estimate (3.6), giving 
��%�Í���±-r+y¦�§�0B-Q�s�£�0 , whereÝïP�} · � · }¯P � . Note that the hidden constant (which is of course only roughly estimated
here) is very small.

3.2. MQ kernel. Let =^-�i�0�3Ï->+Ãs -vuwi�0>xw0 �q . This kernel grows as i~%m� , hence we
do not truncate the coarse level sum by choosing �ª3¢Ù in (2.8). From (B.6) of Appendix B
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TABLE 3.2
Work (number of floating-point operations) � required of the multilevel evaluation method for the GA, for

various � and desired accuracies � . The right column indicates the number of operations required for a direct
evaluation. We average over centers and expansion coefficients as in Table 3.1.Q §�3,+�Mïk�x §ø3,+IMOk t §�3,+�Mïk�0 §ø3,+IMOk|2 §�3,+�Mïk�� 9 direct

100 +IM4d�M � +5�4��+�+ � �3�zd	M y�Ý � ~ � d	Ý4�4~4� +IM�M�M�M�M
200 � M4d3� � y4~4~�+5� Ý3}z~ � M �4~O+e}4} ~P}ed3yO+ d�M�M�M�M�M
400 d�M ��� } }e�O+�~O+ +�+ � }¯+�M +�y ������� +��4�4d4d�+ +���M�M�M�M�M
800 }e�	Ý3} � +5d3�P}ï+5� ��� +�+5�	Ý � Ýz~4~	Ý3} y3yO+ � M4� �4d�M�M�M�M�M

1600 +�Ýz~�Mzd � � �3��Ý4�4� d3y4�4d3y	Ý Ýï+�M4y�M � �	Ýï+5~�MO+ � Ý4��M�M�M�M�M
with |&3,+ , )�3ö+ , ��� = l � p ��� ð 3�u � � � � � � � �x � � � � k:�x �� � P
Applying this to (2.11) and expanding with (3.2), we obtain the accuracy estimate

(3.9) "%� �� X ��ï�[Z �q X Ð�u �� j Z � \ X ÐTu �� j Z � P
This can be bounded by § only if we require Ð�u � · � jeQ for some M · Q · + , and � 3��-����±->+y¦�§�0>0 . Thus, Ð�� +u �� �×��� +§ P
Again, � is rounded to the next even integer. The fast evaluation complexity for the MQ
kernel is 
9�K� ( Xï��� +§ Z -QÕsº£�0±s,Xï��� +§ Z x u x )
operations. Hence, the algorithm scales linearly with Q and £ for all u��,ñ Q or smaller. For
larger u , 
 is dominated by the coarse level summation (2.7). As discussed in « 2.3, we can
reduce this computation to ��-�-����±->+y¦w§�0 u�0¯���±-����1-r+w¦w§�0òu�0�0 using the FFT.

3.2.1. Numerical experiments. Similarly to « 3.1.1, we numerically verify the accuracy
and work estimates derived above. The same assumptions on the centers, evaluation points
and expansion coefficients are made; u°3 ñ Q±¦*d and £ 3 � Q . The FFT summation technique
of « 2.3 is not used, as u��Kñ Q .

Here, § � 3\M , thus we choose � (AÐ to have § é ��§ . The optimal ÐT( � that minimize
(2.9) are � 3 ��� �f��� � W(3.10) ÐÏ3 � jeQu � ((3.11) � 3ih�h �/j#j ((3.12)
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We use the non-optimized value of Q�3 +y¦ed .
We first verify that the relative error "��\��-§�0 . Table 3.3 shows the results for " for

various values of Q and § . Each entry in the table is the average of ten different random
experiments as in Table 3.1. Note that " is much smaller than § , especially as § becomes
smaller (i.e. as � grows). This is most likely because the last bound in (3.9) does not account
for the � ñ � term in the denominator. More precise error bounds and parameter studies will
be explored in future research.

TABLE 3.3
Relative error x of the multilevel evaluation method for MQ kernel.Q §�3 +IMïk�x §�3ö+�Mïk t §�3,+�Mïk�0 §�3,+�Mïk|2 §ø3,+IMïk�� 9

100 � P�+yÝªF�+IMOk   � P yV}ªF�+IMOk|0 � P d +�F�+IMïk�2 +�P �O+�F�+IMïk�� 9 d�P �O+�F�+IMOk:�  
200 +�P y�+�F�+IMOk   y�P�+���F�+IMOk|0 � P�+yÝªF�+IMïk�2 �OP ~�M�F�+IMïk���� � P ~zdøF�+IMOk:�  
400 ��P Ý�ÝªF�+IMOk t +�P�+�y�F�+IMOk|0 +�P � +�F�+IMïk�2 yOP yP}ªF�+IMïk���� +�P yzdøF�+IMOk:�  
800 d P y3�RF�+IMOk t +�P MV}ªF�+IMOk|0 ��P�}z~RF�+IMïk�� yOP M4��F�+IMïk���� ÝïP dV}ªF�+IMOk:� t

1600 ÝïP�+5y�F�+IMOk t ��P �4døF�+IMOk|� d P�+�+�F�+IMïk�� +�P�ÝedøF�+IMïk���� +�P�+#døF�+IMOk:�  
Second, we verify that the work 
 (3.6) scales linearly with £ , Q , and ���^-r+y¦�§�0 . Table 3.4

compares the number of operations required for our multilevel method for various values ofQ and § . Each evaluation of ñ +ts�� is counted as one operation. The method scales linearly,
similar to Table 3.2. For this case, 
����Í���±-r+y¦�§�0B-QÕsº£�0 , where ÝOP ~ · � · }ïP � .

TABLE 3.4
Measure of work � required of the multilevel evaluation method for the MQ, in terms of operation count.

The right column indicates the number of operations required for a direct evaluation. The centers and �S¾�¿��
evaluation points are randomly distributed in the � g��>��� .Q §�3,+�Mïkíx §°3,+IMïk t §�3,+�Mïk|0 §ø3,+IMïk�2 §�3,+�Mïk:� 9 direct

100 +IM ����� � MO+5d3� � � � }e~ y3~�M�M � ÝO+ � +�+ +IM�M�M�M�M
200 � M � �P} y3�4yV}¯+ Ýï+�+5y4~ }zyzdP~P} �3�4��+�+ d�M�M�M�M�M
400 d�M�+IM � }3}�Ý4�4� +IM�M3y�M3y +#d � } � } +�~P}4}ï+�+ +���M�M�M�M�M
800 }e�3~ � } +�Ýzd�M3�O+ +5�P}z�P}z~ � ~�MO+ � } y3�4�4�3~4� �4d�M�M�M�M�M

1600 +yÝz��+#d � y�M	Ýz~4��+ y3�O+�y�M4y Ý�Ýzd�M�M � } � yP}�M4� � Ý4��M�M�M�M�M
3.3. IMQ kernel. The infinitely smooth kernel =^-�i�043U-r+�s�-�uyi�0Ax�0`k �q decays as i�%�� ,

but not rapidly enough for a coarse level truncation in (2.8). Thus, we again set �ø3¢Ù . The
following bound on =1l � p`-i�0 follows from (B.6) with |&3öC�+ , )?3,+ :��� = l � p ��� ð 3�u � � � � � � � � �x ��� x� � P
Using this in (2.11) and expanding with (3.2), we obtain the same accuracy estimate as (3.9),
thus we use the same parameters as for MQ, (3.11)–(3.12). The numerical results are similar
to those of « 3.2, hence we do not further elaborate on them.

4. Fast evaluation algorithm in two and higher dimensions. We now consider the
multilevel algorithm for smooth kernels in higher dimensions. For simplicity, we only de-
scribe the two-dimensional algorithm as the generalization to higher dimensions should be
straightforward. We do, however, describe the complexity of the algorithm in terms of )h* �
dimensions.
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Let HI< 7�J 57�8:9 (DHD/ a J ¨a 8:9E´ ".x and < 7 3 -�² l �>p7 (>² l�xAp7 0 , / 7 3 -�³ l �>pa (>³ l�x�pa 0 . Without loss of
generality, we assume that the centers HI< 7�J 57�8:9 and evaluation points HD/ a J ¨a 8:9 lie in µ MO(D+D¶vx .
We again make no assumption on the densities of the centers and evaluation points, but still
label them as “level ¼ ”, where ¼ is some measure of cell/point distribution. Quantities defined
at level ¼ are again denoted by lowercase symbols. The task is now to compute

(4.1) 2	-�/ a 043 567�8:91; -�< 7 0>=?-A@B/ a C�< 7 @I0E(�¡G3×MO(I+�(IPDPDPD(>£ÏP
We define an auxiliary “level � ”, � 3 -Ðà(�Ð~0 , where each component consists of two

uniform grids ��Ñ l �`p�#��� Ò ��#� 8:9 , �íÓ l��`pÔ ��� Ö �Ô � 8:9 , �T3ô+�( � , each with spacing Ð . Furthermore, we

introduce the notationH5�s� J��� 8:9 3 � Ñ l �>p� � � Ò �� � 8:9 C � Ñ l�xAp� q � Ò q� q 8:9 (��~3,- Ø � (DØ x 0B(7� 3U-Ù � (�Ù x 0B( andH5 s¡ J�¢¡ 8:9 3 � Ó l �>pÔ � � Ö �Ô � 8:9 C � Ó l�xApÔ q � Ö qÔ q 8:9 (7£�3U-ß � (Aß x 0B(7¤Ú3,-�á � (Aá x 0`(
where C denotes the Cartesian (or direct) product. As an example, the level � center-Ñ l �>p� � (�Ñ l�x�p� q 0 corresponds to � l � � b � q p ; similar notation holds for the level � evaluation points.
Note that this notation differs from the level ¼ notation where the centers and evaluation
points are simply a list of the 2-D points. The grids H#�B� J �� 8:9 and H* s¡ J5¢¡ 8:9 are selected
so that they cover HI< 7�J 57�8�9 and HI/ a JI¨a 8:9 , respectively, with the additional condition that a
discrete function at level � can be approximated at any < 7 using centered, � th-order, tensor
product interpolation, for � �T��� . Specifically, for �Õ3ö+�( � , we chooseÑ l��`p� 3N² l��`pmin C - � C�+y0rÐ� s×Ø:Ðà(¸Øà3NM�(D+�(IPDPIPB(�Ù � (Ó l��BpÔ 3N³ l��Bpmin C - � C¥+�0rÐ� s¸ß�Ðà(!ß?3cMO(I+�(IPDPDP`(�á � (
where Ù � 3¦¥ ² l��`pmax C�² l��BpminÐ C©MOP�Ý�§Ts � ( ² l��Bpmin 3 EHG �9#¨�7�¨ 5 ² l��`p7 ( ² l��`pmax 3 Eª©e«95¨O7�¨ 5 ² l��Bp7 (á � 3 ¥ ³ l �`pmax C!³ l��`pminÐ C!M�P Ý § s � ( ³ l��Bpmin 3 EHG �95¨ a ¨ ¨ ³ l��`pa ( ³ l��`pmax 3 EH©z«95¨ a ¨ ¨ ³ l��`pa P
As for the 1-D algorithm, level � is coarser than, and at most comparable with level ¼ .
The values of � and � are determined by u and the target accuracy § in evaluating (4.1) as
explained in the following sections. Utilizing = ’s spatial smoothness, we again replace the
expensive summation (4.1) by a less expensive summation at level � .

Because =^-�@B/ a C�<t@D0 is a smooth function of ²�l �>p�(�²íl�x�p for every fixed / a , its value at<�3�< 7 can be approximated by a centered � th-order, tensor product interpolation in ²�lv�rp and²íl�xAp from its values at neighboring �B� ’s. Namely,
(4.2)=?-�@�/ a C!< 7 @D0$3 6� q å�æ4¬ q�ç è 7 � q 6� � å�æ4¬ � ç è 7 � � = � �� /

a C�� l � � b � q p �� � s¸��-�§�é�0`(TL?3×M�(D+�(DPDPIPB(>Q!(
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where for �T3ì+�( � , ê l��`p7  �3 � Ø �  Î Ñ l��Bp� � C!² l��`p7 Î · � Ð�¦ � � , è 7 �#� are the centered � th-order

interpolation weights from the coarse centers Ñ l��`p�#� to ² l��`p7 , and § é is the interpolation error,
which we bound in « 4.1 and « 5. The anterpolation of H ; -< 7 0 J 57�8:9 to level � is obtained by
substituting the approximation (4.2) into (4.1) and interchanging the order of summation:
(4.3)2	-�/ a 0$3 Ò q6� q 8:9 Ò �6� � 8:9 ã � � l � �

b � q p � = � �� / a C�� l � � b � q p �� � s¸��-Q4@ ] @ ð § é 0`(!¡.3NMO(I+�(DPIPDPB(�£Ï(
where
(4.4)ã � � l � � b � q p �  �3 67�î � q å�æ ¬ q�ç è 7 � q 67�î � � å�æ ¬ q�ç è 7 � � ; -�< 7 0B(�Ø x 3×M�(D+�(DPDPIPB(�Ù x (�Ø � 3cMO(I+�(IPDPDP`(AÙ � P
We implement (4.4) similarly to (2.12): all ã ’s are initialized to zero and each ; -�< 7 0 is
distributed among � x neighboring �®� ’s as depicted in Fig. 4.1.

Λ(Y(J1,J2) ) Λ(Y(J1+1,J2) )

Λ(Y(J1+1,J2+1) )Λ(Y(J1,J2+1) )

λ(yj)

ωjJ2+1

ωjJ2

ωjJ1 ωjJ1+1

ωjJ1 ωjJ1+1

FIG. 4.1. An example of anterpolation in 2D for ½Ã¾�¿ .
Similarly, using the smoothness of =^-�@`/�C¯� � @I0 as a function of ³1l �>p�(>³1l�x�p for a fixed� � , we obtain

(4.5)=Í-A@`/ a C¯� � @D0$3 6Ô q å æ4¬ qwõ è
a Ô q 6Ô � å æ4¬ � õ è

a Ô � = � ��   l Ô � b Ô q p C¯� � �� � s&��-�§ é 0B(�¡G3×MO(I+�(IPDPDPD(>£ÏP
where for �à3 +�( � , ê l �`pa  �3F�íß �  íÎ Ó l �`pÔ � C!³ l �`pa Î · � ÐE¦ � � , è

a Ô � are the centered � th-order

interpolation weights from the coarse evaluation point Ó l��`pÔ � to ³ l��`pa . Substituting (4.5) into
(4.3) gives

(4.6) 2	-�/ a 043 6Ô q å æ4¬ q�õ è
a Ô q 6Ô q å æ3¬ � õ è

a Ô � ä �   l Ô � b Ô q p � s���-�Q4@ ] @ ð § é 0`(!¡.3×M�(D+�(DPDPIPB(>£ (
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where ä �   l Ô � b Ô q p �  �3 Ò q6� q 8:9 Ò �6� � 8:9 ã � � l � �
b � q p � = � ��   l Ô � b Ô q p C�� l � � b � q p �� � (ß � 3NMO(I+�(DPIPDPB(�á � ($ß x 3NM�(D+�(IPDPIP`(Aá x P(4.7)

Note that summing all the terms as is indicated above may not be necessary because ã � � l � � b � q p �could be zero at some coarse level centers. This would occur, for example, when the data fall
on some smaller dimensional subset than µ MO(I+B¶x . We can also truncate (4.7) to a neighborhood
of  s¡ for fast-decaying = (e.g. GA):ä �   l Ô � b Ô q p �  ë3 Ò q6� q 8�9 6� � î<°w±³² kµ´³¶ °�ÿ���� ã � � l � �

b � q p � = � ��   l Ô � b Ô q p C�� l � � b � q p �� �sø��-�Q4@ ] @ ð § � 0`($ß � 3cMO(I+�(IPDPDP`(�á � ($ß x 3×M�(D+�(IPDPIPB(Aá x ((4.8)

where � �×� , and the truncation error § � depends on = and � (and the dimension ) ). If =
does not decay fast (or at all) as i°%�� (e.g. MQ and IMQ), we resort to �Ã3 Eª©e« H�Ù � (�Ù x J(i.e. no truncation).

Our 2-D fast multilevel evaluation task of (4.1) thus consists of the following steps:
1. Anterpolation: for every L?3NMO(I+�(DPIPDPB(�Q , compute the anterpolation weights H è 7 �#� J �#��å�æ4¬ � ç ,�Õ3,+�( � . Then compute the coarse expansion coefficients H�ã�-·� � 0 J*�� 8:9 using (4.4).
2. Coarse Level Summation: evaluate ä �   l Ô � b Ô q p � , ß � 3NM�(D+�(IPDPIPB(Aá � , ß x 3×MO(I+�(IPDPDPD(Aá xusing (4.8).
3. Interpolation: for every ¡G3NM�(D+�(IPDPIP`(>£ , compute the interpolation weights H è

a Ô � J Ô ��å æP¬ � õ ,�Õ3,+�( � . Then interpolate Hwä�-	  Ô 0 J ¢¡ 8�9 to Hw2�-/ a 0 J ¨a 8:9 using (4.6).
The generalization to )h� � dimensions follows by� defining a “level � ”, � 3ì-�ÐT(�Ðà(DPDPIPD(AÐ~0 (i.e. ) components) consisting of the ) -

dimensional Cartesian product of the uniform center-grid ��Ñ l��Bp�#� � Ò ��#� 8�9 , and evaluation-

grid � Ó l��BpÔ ��� Ö �Ô � 8:9 , �Õ3ö+�( � (IPDPDPD(�) ;� using centered, � th order, tensor product interpolation between the level ¼ and level� grids;� generalizing equations (4.2)–(4.8) to ) dimensions.

4.1. Complexity and accuracy. We describe the complexity and accuracy of the above
algorithm for a general dimension ) and for the case when H�/ a J ¨a 8:9 and HI< 7�J 57�8:9 are uni-
formly distributed in µ M�(D+D¶ # . We may thus make the simplifying assumption that Ù � 3 Ù
and á � 3 á , ��3»+�( � (DPIPDP`(�) , for appropriate values of á and Ù . The accuracy of the
algorithm does not change for non-uniformly distributed points, but the work may be smaller
for this case (e.g. if the centers are located on a lower dimensional space of µ M�(D+D¶ # , most
terms in (4.7) are zero and need not be summed). Uniform dense points provide the worst
case estimate of the work.

Step 1 above consists of two parts. Computing the weights H è 7 �5� J �5� , �~3 +�( � (DPDPIP`(�) ,
requires ��- � )�Q10 operations (see Appendix A). Then (4.4) is executed in ��- � # Q10 operations.
The truncated coarse sum in step 2 requires ��->-N�Dá,0 # 0 operations. As discussed below, this
cost can again be cut using the FFT. Step 3 consists of computing H è

a Ô � J Ô � , �E3 +�( � (DPDPIP`(�) ,which costs ��- � )�£T0 , and interpolating the level � RBF expansion to level ¼ for a cost of
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(4.9) 
9�U-�Qhsº£�0 � # sv¸ �Ð�¹ # P
Let º!3 -·� � (+� x (IPDPIPD(1� # 0 � " # . Then for even-order, � , tensor-product interpolation in) -dimensions, the error [42, « 19] depends on bounds for the � #�C¥+ terms» � =±-A@¼º±@I0» � �7 � ( + � L � � )&(» x � =^-�@Uº�@I0» � �7 � » � �7 q ( + � L � · L x � )Õ(»   � =^-�@Uº�@I0» � �7 � » � �7 q » � �7�½ ( + � L � · L x · L   � )Õ(

...
...» # � =^-�@Uº±@D0» � �7 � » � �7 q FDFIF » � �7 � ( + � L � · L x · FDFIF · L # � )ÕP

Because = is radially symmetric and infinitely smooth, it is sufficient to express the bounds
in terms of

(4.10)
» � � =±-A@¼º±@I0» � �� » � �x FDFDF » � �� ( + � � � )ÕP

The coarse grid interpolations are centered, thus the error §Dé can be uniformly bounded
by [42, p. 32,217]§�é � #6� 8 � X )� Z ÷ Ð � � ��� � � �x ��� x��� � ù � ���� » � � =^-�@Uº±@D0» � �� » � �x FDFIF » � �� ���� ð P
In « 5 we provide more explicit bounds for the GA, MQ, and IMQ radial kernels.

The truncation error § � in äÃ-	  ¡ 0 due to (2.8) is again bounded by the “tail” of = in )
dimensions. For every £ª3,-�ß � (�ß x (DPIPDPB(Aß # 0 ,
(4.11) §�� � � � �q��� #x �  ð��� i # k:� Î =^-�i�0IÎ�)�iw(
where the constant in front of the integral is the surface area of the ) -sphere.

We define the evaluation accuracy by the relative error norm (2.10). Using the bounds
on §`é and §�� , we obtain (assuming the condition number &s�,+ )"¾� #6� 8 � X )� Z ÷ Ð � � � � � � �x �U� x��� � ù � ���� » � � =^-�@Uº±@D0» � �� » � �x FDFIF » � �� ���� ð s � � �q��� # x �  ð��� i # k:� Î =^-�i�0IÎ�)�i�P
The algorithm’s efficiency is again determined by choosing the parameters ÐT( � (+� to min-
imize 
 for a bounded accuracy " � § (or minimize " subject to a bounded 
 ). The
algorithm’s efficiency depends on = and ) . In « 5 we show for a few specific RBFs that by
correctly choosing the parameters, the algorithm scales like ��->-�QEsº£T0¯���±-r+y¦�§�0 # 0 .

Fast updates and parallelization can be efficiently organized similarly to the 1-D case;
see « 2.2.
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4.2. Fast coarse level summation. We again assume that HI/ a J ¨a 8:9 and H�< 7 J 57�8:9 are uni-
formly distributed in µ M�(D+D¶ # (this is again not necessary for our algorithm, but makes the com-
plexity analysis easier). Similarly to the 1-D algorithm, when the evaluation points HI/ a J�¨a 8:9
are not far outside the convex hull of the centers HD< 7�J 57�8:9 and vice versa, the coarse evaluation
points can be set equal to the coarse centers, viz. ¤ 3'� , and Ù � 3×Ù , �Õ3 +�( � (DPIPDP`(�) . The
coarse level summation (2.7) then again amounts to a matrix vector product similar to (1.2).
In this case, however,

X
is a symmetric ) -level recursive block Toeplitz matrix [35]. Using

the algorithm of Lee [35, 36], we can multiply this matrix vector product in ��-Ù # ���ªÙ~0 op-
erations. When no coarse level truncation is performed (i.e �?3UÙ ) this greatly reduces the��-Ù~x # 0 complexity of (2.7). With this additional trick, the complexity of the algorithm thus
becomes 
��,-Q&sº£T0 � # s +Ð # EHG � I � # (>��� +ÐLK (
which scales linearly with Q and £ .

5. Applications to specific kernels in )Õ* � dimensions. We discuss the accuracy and
complexity of the ) -dimensional algorithm applied to the GA, MQ, and IMQ kernels and
postpone the numerical experiments until « 6.

5.1. GA kernel. Let =^-iw0t3Nj	k1l�m>o�pq . By changing variables to �$3,-vuwi�0�x , the following
bound on the truncation error (4.11) is obtained:§�� � � � q� � #x � u #  ðl ��� m�p q � �q k�� j kµ� )3�!3 X ñ �u Z # � � #x (I-N�BÐ�u�0rx �� � #x � P
For )Õ* � , the incomplete gamma function can be bounded as follows [26]:� � #x (I-N�BÐ�u�0rx ���� #x � · +�C ¸ +�C©j k±l ��� m>p�qDlÀ¿ïl # {Ax � �rpp � q�Á � ¹ # {Ax P

The bounds on (4.10) for the GA kernel are derived in Appendix B and are given by (B.2).
Combining these bounds with the truncation error bounds and using Stirling’s asymptotic
formula (3.2), we obtain the accuracy estimate
(5.1)"%� #6� 8 � X )� Z X �ñ �ï�[Z � X ÐTu ñ �ñ � j Z � � s X ñ �u Z #HÂ +�C ¸ +�C!j k1l ��� m>pqBl�¿ïl # {�x � �>p�p � q�Á � ¹ # {�x�Ã P
Requiring Ð�u ñ � · Q ñ � j for some M · Q · + , the first term becomes#6� 8 � X )� Z X �ñ �ï� Z � X Ð�u ñ �ñ � j Z � � ��Q � P
We can thus bound the first term in (5.1) by ��-�§�0 by choosing � 3 ��-����^->+y¦�§�0>0 . Therefore,Ð and � asymptotically behave like (3.3) and (3.5), respectively.

The second term in (5.1) is bounded by ��-�§�0 if+Ð�u Â � X ) � sN+ Z Ã �>{ # VÄW ���$ÅÆÇ ++�C ¸ +�C m � fÈ � Áòq ¹ x�{ #/É#ÊË
ZÀÌ[ �q \ ��(
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provided u · ñ � ¦w§���{ # . 
 is minimized if and only if � is, hence we choose (keeping only
the main terms) �_� Â � X ) � sN+ Z Ã ��{ # Â ��� X +u # § Z ��� +§ Ã �q
Using the above results on Ð , � , and � in (4.9), we can evaluate (4.1) for the GA RBF in
��N� ( XO��� +§ Z # -�Q&sº£�01s � X ) � s×+ Z Â ����X +u # § Z ��� +§ Ã �q u # )
operations (for )&3S+ , this is identical to (3.6)). For u \ Q �>{ # , 
 scales linearly with Q and£ . Like the 1-D algorithm, if u�b Q then the original sum can be truncated similarly to (4.8)
and directly evaluated in ��-�Qhsó£T0 operations.

5.2. MQ kernel. Let =^-�i�0t3U-r+�sà-vuwi�0 x 0 �q . We set �Ã3cÙÎÍÐÏ1Ñ°3 Eª©e« � ¨ � ¨ # Ù � because= grows as iÍ%�� . The bounds on (4.10) for MQ are given by (B.6) with |&3U+ . Using this
result and Stirling’s asymptotic formula (3.2) we obtain the accuracy estimate"%� #6� 8 � X )� Z ñ �� � X �ñ �ï�³Z � ( Ð�u � ñ �� j ) � � P(5.2)

Requiring ÐTu � ñ ) · � jeQ for some M · Q · + , the whole sum is asymptotic to Q � . We can
thus bound " by ��-§�0 by choosing � 3c��-���^-r+w¦w§�0>0 . Therefore,ÐY� +u � ñ )(5.3) � �×��� +§ P(5.4)

In practice, � is rounded to the next even integer.
Using the above results on Ð , � , and noting that �Ò�'+y¦wÐ , then from (4.9), we can

evaluate (4.1) for the MQ RBF in
9�K� ( X ��� +§ Z # -�Qhsº£�0�s X u ñ )4��� +§ Z x # )
operations. Hence, the algorithm scales linearly with Q and £ for all u \ QG�>{Dl�x # p . For largeru , 
 is dominated by the coarse level summation. As discussed in « 4.2, we can reduce the

complexity of this operation to �ÓX ¸ u ñ )$���±->+y¦�§�0 ¹ # ��� ¸ u ñ )4���±-r+y¦�§�0 ¹ # Z with the FFT.

5.3. IMQ kernel. Let =±-i�0Ã3S-r+�sK-�uyi�0�x�0`k �q . This kernel does not decay fast enough,
so we again set �T3 Ù ÍÐÏ+Ñ 3 Eª©e« � ¨ � ¨ # Ù � . The bounds on (4.10) applied for IMQ are
given by (B.6) with |ó3ÏC�+ . Using this result and Stirling’s asymptotic formula (3.2), we
obtain the accuracy estimate"%� #6� 8 � X )� Z ñ � X �ñ �ï�³Z � ( Ð�u � ñ �� j ) � � P
By choosing Ð and � according to (5.3) and (5.4), respectively, we obtain the same accuracy
estimates as the MQ kernel. We thus do not elaborate further on the IMQ kernel.
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6. Numerical results. We verify the complexity and accuracy results of our algorithm
for a set of test examples similar to those presented in [39]. In all experiments, we set uE3-�Q±��{Ax # 0A¦*d , select expansion coefficients H ; -² 7 0 J 57�8:9 randomly from µnC�+�(D+D¶ , and measure the
relative error " according to (2.10). In all cases, the reported results are averaged over at
least five different random choices of H ; -² 7 0 J 57�8:9 . Note that in all but the last test problem,
the fast coarse summation technique of « 4.2 is not employed.

To guarantee the accuracy of the algorithm is ��-�§�0 , the input parameters � , � , Ð for the
different = are chosen as follows:� GA kernel. We choose §Béh3c§5�º3c§�¦ � to enforce §`é�s�§5� � § . For Ð and � we use

the same 1-D values given by (3.7) and (3.8), respectively. For � , we use the value

�Ã3 lnnnnnno nnnnnnp
VÄÄÄÄÄ �� m � � � #x sN+ ��� �>{ # VÄW ���$ÅÆÇ ++�CÔ¸�+�C m � fx È � Áòq ¹ x�{ # É#ÊË

ZÀÌ[ �q ZÀÌÌÌÌÌ u · ñ � X �§ Z ��{ # (M u�*�ñ � X �§ Z ��{ # P� MQ and IMQ kernels. No truncation is performed (i.e. §e�º3cM );Ð¤3 � jeQu � ñ ) (
where � is given by (3.10); and � is given by (3.12).

The paramters could be further optimized by optimizing Q for each test case; this is not nec-
essary because good results are obtained for a wide range of Q values. In all the following
results, Q was chosen in µ MOP � Ýï(AMOP y�Ýw¶ .

EXAMPLE 6.1. We consider evaluation with the GA kernel with Q centers H�< 7 J 57�8:9 and£ 3ÏQ evaluation points HD/ a J ¨a 8�9 uniformly distributed in µ M�(D+D¶vx (they do not necessarily
coincide). Table 6.1 shows the relative error " of our fast evaluation method. As expected," · § in all cases. Table 6.2 similarly compares the number of operations required for our
method versus a direct evaluation. The work scales as 
Õ�,�E-���±-r+y¦�§�0>0 x -QTs×£�0 , where� P y · � · ��P � .

TABLE 6.1
Relative error x of the multilevel evaluation method for Example 6.1 (GA kernel and uniform distribution in� g��r���<Ö ).QT3×£ §ø3,+IMOkíx §ø3 +IMOk t §�3 +IMïk�0 §�3ö+�Mïk�2 §�3,+�Mïk�� 9

1000 }ïP �V}ªF�+IMOk   � P �4~�F�+IMOk|{ +�P ��� F�+IMOk|� � P ~�+�F�+IMOk|� +�P � �RF�+IMïk����
2000 ÝOP yV}ªF�+IMOk   � P ��M�F�+IMOk|{ ��P ~3��F�+IMOk|2 y�P ~3~�F�+IMOk|� +�P �V}ÃF�+IMïk����
4000 }ïP�}z��F�+IM k   � P ~O+�F�+IM k|{ +�P d +�F�+IM k|� � P � ��F�+IM k|� ��P�+ � F�+IM k��rx
8000 }ïP yV}ªF�+IMOk   � P d�M�F�+IMOk|{ +�P � ÝRF�+IMOk|� � P ��+�F�+IMOk|� +�P�+��RF�+IMïk����

16000 ��P �3��F�+IMOk   yOP y�M�F�+IMOk|{ ��P�}z~�F�+IMOk|2 � P �3��F�+IMOk|� +�P � �RF�+IMïk����
EXAMPLE 6.2. We consider non-uniformly distributed points in µ MO(I+B¶ x with the MQ

kernel. The Q centers are randomly placed within one tenth of the diagonal of the unit square
(“track data”), while the £ 3�Q evaluation points are uniformly distributed in µ MO(I+B¶�x . Ta-
ble 6.3 shows the relative error " of our fast evaluation method. Similarly to the 1-D ex-
ample of « 3.2.1, we see that "Ø×Y§ , especially as §�%YM (i.e. as � grows). This is most
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TABLE 6.2
Comparison of the work (number of floating-point operations) � required of the multilevel evaluation method

for Example 6.1. The right column indicates the number of operations required for a direct evaluation.Q §ø3,+IM kíx §�3,+�M k t §ø3 +IM k|0 §�3ö+IM k|2 §�3 +IM k�� 9 direct
1000 ����� y3��M }�Ý�Ýzd3y�M � + � } � }e~ y4y4d4dk}ey�M �3�O+5�3�4� � ~�P M�MRF�+IM 0
2000 d�M3�4y	Ý�M +5d�M�M	Ý3}ed y � Ý ��� Ýed Ýzy � �4d	Ý�M �3~4~�Ý�M�Ý�M y�P � MRF�+IM3�
4000 }4}zy4�V}e~ � d�+5�3�4y�M Ý�Ý � ~�Ý�Ýz~ ~4� � Ý4�O+#d +�ÝO+5�P} � d � +�P � ~RF�+IM32
8000 +#dP~4yO+ � � d3d3~ � d3~3� �4� � ~4y3yzd +#d3y3y�Ý � }*d � Ýzd�MO+�y4� � ÝOP�+ � F�+IM32

16000 � ~V}e�4�3�zd ~3y�M4~ � � � +e}e�3��M�ÝO+5~ � Ýed +5��M4~ � d � ~�M�M3y4y�M � P M	ÝªF�+IM3�
likely because our asymptotic error bound for (5.2) does not account for the � �B{Ax � � quantity
in the denominator of the terms in the summation. The complexity 
 for this example is
similarly presented in Table 6.4. Again, the method scales linearly with Q and £ . We observe
that for smaller § the break-even point between our fast method and the direct method occurs
for larger Q (e.g., for §�3¹+IM k�� 9 , at QÙ� � Ý�M�M ). However, in these cases the actual error"¦× § and is close to machine precision; still, for "¬*Ï+�M�k:� 9 our method is faster than
direct summation for all Q!*c+IM�M�M .

TABLE 6.3
Relative error x of the multilevel evaluation method for Example 6.2 (MQ kernel and track data).Qà3×£ §ø3 +IMOkíx §ø3,+IMOk t §ø3 +IMOk|0 §°3ö+�Mïk|2 §ø3 +IMOk:� 9
1000 � P ��+�F�+IMOk t +�P �O+�F�+�Mïk|� � P�Ýï+�F�+�Mïk:� 9 � P � Ý�F�+IMïk��   �OP � ��F�+IMOk:�1{
2000 +�P ÝO+�F�+IMOk t +�P ��M�F�+�Mïk|� +�P M � F�+�Mïk:� 9 yOP�+�Ý�F�+IMïk��   +�P�+*}ªF�+IMOk:� t
4000 � P�+5døF�+IMOk t +�P�Ýzy�F�+�Mïk|� +�P �O+�F�+�Mïk:� 9 +�P MP}RF�+IMïk��   }¯P dV}ªF�+IMOk:�1{
8000 y�P �3~�F�+IMOk t +�P � M�F�+�Mïk|� +�P y4~�F�+�Mïk:� 9 +�P � }RF�+IMïk��   +�P � }ªF�+IMOk:� t

16000 +�P�+���F�+IMOk t �OP �zdøF�+�Mïk|2 �OP�+ � F�+�Mïk:�A� +�P y4yøF�+IMïk��   yOP ��ÝRF�+IMOk:� t
TABLE 6.4

Comparison of the work (number of floating-point operations) � required of the multilevel evaluation method
for Example 6.2. The right column indicates the number of operations required for a direct evaluation.Qà3×£ §ø3 +IMOkíx §�3,+�Mïk t §�3ö+�Mïk�0 §ø3 +IMOk|2 §�3,+IMOk:� 9 direct

1000 y4� � ~�M � +�ÝO+�+ � yzd Ý�MzdP�4~4�3~ + � � � ~4��+IM y4y3~O+ � d3~3� ~�P M�M�F�+IM30
2000 �4~V}e~�M � � ÝO+5�3y4~4� }zy � �4~4~ � +���MV}e��Ý�M4� dV} � �V}ey4y4d y�P � M�F�+IM3�
4000 +5yO+�+5y3� � d � y4��+5� � +�+yÝz��+*}e~3� � ~4�3��M4�V}wM �4�4d	ÝP}4}4}ed +�P � ~�F�+IM32
8000 � Ýz�3�4�3y4~ }*d � }�M�Ýz~ +5�3�4�4d3~�Ý�M dP�O+�+�+ � +IM +�+�MO+�ÝP}e~3�zd ÝOP�+ � F�+IM32

16000 Ý�M � d � yzd +5y3�4y4��M � � y � ��Ý4~4~P}ed }�Ýz~�M�M4y�M4� +*} � }e~�M4�4d � � P M	ÝRF�+IM3�
EXAMPLE 6.3. We use the same “track data” setup as Example 6.2, but investigate

the case where Q¾× £ , which typically occurs in applications. The exact relationship is£ 3ö+�M�Q evaluation points uniformly distributed in µ MO(D+D¶�x . The relative error for this example
is shown in Table 6.5. The observed "Ú× § can again be explained as in Example 6.2.
Table 6.4 displays the operation count, which grows linearly with Q and £ . Here whenever the
measured " is ��-§�0 , the complexity of our fast evaluation is lower than a direct evaluation.

EXAMPLE 6.4. We consider evaluation of the IMQ kernel with Q centers and £'3\Q
evaluation points uniformly distributed in µ M�(D+B¶   . This simulates force calculation in an Q -
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TABLE 6.5
Relative error x of the multilevel evaluation method for Example 6.3 (MQ kernel, track data, and �¥¾~�>g�� ).£ §ø3,+IMïk�x §�3 +IMïk t §�3,+�Mïk�0 §ø3,+IMOk|2 §�3,+�Mïk�� 9

2000 y�P�+ � F�+IMOk t � P�} � F�+IMOk|� y�P M4d�F�+IMOk:� 9 yOP�Ýzy�F�+�Mïk:�   d P �3yRF�+IMOk:�1{
4000 � P Ý4�RF�+IMOk t � P�+e}ªF�+IMOk|� � P y�MRF�+IMOk:� 9 � P �zdøF�+�Mïk:�   ÝOP ~�MRF�+IMOk:�1{
8000 � P �3~RF�+IMOk t � P y	ÝRF�+IMOk|� � P �V}ÃF�+IMOk:� 9 yOP � M�F�+�Mïk:�   }ïP ��� F�+IMOk:�1{

16000 � P Ý � F�+IMOk t � P � ��F�+IMOk|� � P Ý4yRF�+IMOk:� 9 yOP�+#døF�+�Mïk:�   ��P M � F�+IMOk:�1{
32000 y�P�+�~RF�+IM k t � P ��M�F�+IM k|� � P ~�MRF�+IM k:� 9 yOP y4~�F�+�M k:�   +�P�} � F�+IM k:� t
64000 +�P dP�RF�+IMOk t ~�P �3~�F�+IMOk|2 ��P yV}ÃF�+IMOk:�A� +�P y4y�F�+�Mïk:�   +�P � ÝªF�+IMOk:� t

TABLE 6.6
Comparison of the work (number of floating-point operations) � required of the multilevel evaluation method

for Example 6.3. The right column indicates the number of operations required for a direct evaluation.£ §�3,+�Mïk�x §ø3,+IMïk t §ø3 +IMOk|0 §�3,+�Mïk�2 §�3,+�Mïk�� 9 direct
2000 yP} ��� y4d +�+5�4d3��M4� yO+e} ��� yzd }�Ýzy4y3y�M3� +5��M�M � d�+#d yOP � M�F�+�M30
4000 }¯+*}z�4y4d +5�P}�Ýï+ ��� Ý�M3� � d3~ � +�+��zdP�4~4�3� � �4�	Ýz~V}eyzd +�P � ~�F�+�M3�
8000 +�y4�zdP~4y4d y4�4�	Ý3}z�zd ~4y3�4�	Ýz~4� +*}zy4�4d�+IM3� d�+�+�y � y4yzd ÝïP�+ � F�+�M3�

16000 � �4~4�3��M � �4�4� � d¯Ýz~ +#d � d3y3~�M � � �3yP}ï+#d4d � �4yP}z�O+e}*d � � P M�ÝRF�+�M32
32000 Ý4y�M4~3�4� � + � �4~�MO+�~4� � Ýz�3�O+�~O+IM Ý�M�+*} � M�Ý�M +�Mzd +�Ýzy	Ýed � ~OP�+5��F�+�M 2
64000 +IM	Ýzy�M4�4�4d � dV}wM3��M	Ýz~ d3~4�3yP}3}4}e~ ~P}z~4��M�Ýzy�M +e}eyV}wM4~3�zd � yOP � ~�F�+�M3�

body simulation with the Plummer potential [39]. Table 6.7 displays the relative error, and
again " is well below § . Table 6.8 shows operation counts; here we use the FFT coarse
summation ( « 4.2). The algorithm scales linearly with Q , £ and -����±-r+w¦w§�0�0>Û where Ü�� � P Ý
(i.e. slightly better than the expected Ü&3vy , for Q � +IMP{ ). Our method is faster than direct
summation in all cases except QT3KÝ�M�M�M and §�3,+�M k:� 9 (where again "%�,+�M k:� t ×¹§ ).

TABLE 6.7
Relative error x of the multilevel evaluation method with fast coarse level summation for Example 6.4 (IMQ

kernel and uniform distribution in � g��r���<Ý ).Qà3�£ §�3,+�M kíx §ø3 +IM k t §ø3,+IM k|0 §ø3 +IM k|2 §�3,+�M k:� 9
5000 +�P �O+�F�+IM k   ~OP ~�ÝRF�+�M k�� yOP ��ÝRF�+�M k|� +�P ~zdøF�+IM k:�>x � P � � F�+IM k�� t

10000 yOP �4y�F�+IMOk   +�P ��M�F�+�Mïk�0 ~OP y4��F�+�Mïk|� d�P�}e��F�+IMOk:�>x d�P�+*}ªF�+IMïk�� t
20000 � P�+5��F�+IMOk   +�P�+�+�F�+�Mïk�0 d�P d3y�F�+�Mïk|� � P �zdøF�+IMOk:�>x yOP �O+�F�+IMïk�� t
40000 � P�} � F�+IMOk   +�P � ÝRF�+�Mïk�0 ÝïP�+5��F�+�Mïk|� yOP�+5y�F�+IMOk:�>x �OP MP}ªF�+IMïk�� t
80000 � P�}¯+�F�+IMOk   +�P�+ � F�+�Mïk�0 d�P d � F�+�Mïk|� � P yO+�F�+IMOk:�>x ÝïP y4��F�+IMïk�� t

100000 +�P �3��F�+IMOk   �OP �4~�F�+�Mïk�� � P�Ýz��F�+�Mïk|� +�P d�M�F�+IMOk:�>x �OP M�ÝRF�+IMïk�� t
6.1. Comparison with other fast methods. Preliminary results comparing the perfor-

mance of the multilevel approach with FMM and FGT for various smooth kernels and ex-
pansion coefficients suggest that the multilevel approach has a uniformly bounded evaluation
error for all u , whereas the other methods may have an uncontrolled error (or uncontrolled
complexity) for some regions of the shape parameter. However, more extensive and system-
atic comparison of the methods is called for, which is left to a future paper.
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TABLE 6.8
Comparison of the work (number of floating-point operations) � required of the multilevel evaluation method

for Example 6.4 with fast coarse level summation. The right column indicates the number of operations required for
a direct evaluation.QT3N£ §�3 +IMïk�x §�3ö+IMOk t §�3 +IMïk�0 §�3ö+IMOk|2 §�3 +IMïk�� 9 direct

5000 yOP M � F�+IM30 � P �O+�F�+�M4� ÝOP ~3��F�+IM3� +�P y�ÝRF�+�M42 � P ~3y�F�+IM32 � P�}�ÝRF�+IM32
10000 �OP�+5��F�+IM30 d�P�+�ÝRF�+�M4� ~�P�+5døF�+IM3� � P�}e~�F�+�M42 ÝOP ~3y�F�+IM32 +�P�+IM�F�+IM3�
20000 +�P M4��F�+IM3� �OP �O+�F�+�M4� +�P �3��F�+IM32 yOP �P}ªF�+�M42 ~�P � ��F�+IM32 d�P d�M�F�+IM3�
40000 +�P ��ÝRF�+IM3� +�P�+�ÝRF�+�M42 � P ÝP}ªF�+IM32 �OP yzdøF�+�M42 +�P y � F�+IM3� +�P�}e��F�+IM¯� 9
80000 yOP �4y�F�+IM3� � P y � F�+�M42 d P y3��F�+IM32 +�P � ~�F�+�M4� � P �V}ªF�+IM3� }¯P MzdøF�+IM¯� 9

100000 d�P ~ � F�+�M3� � P ~ � F�+�M42 ÝOP y�+�F�+IM32 +�P�Ý � F�+�M4� y�P�+���F�+IM3� +�P�+IM�F�+IM¯���
7. Concluding remarks. We presented a fast RBF evaluation algorithm for smooth

radial kernels. It applies to other applications of many-body interactions with smooth kernels
(e.g., image processing and atomistic simulations). The algorithm scales linearly with the
number of centers and with the number of evaluation points. Each additional evaluation can
be performed separately and costs ��->-���^-r+w¦w§�0 # 0>0 where § is the desired accuracy and ) is
the dimension. Numerical results with GA and GMQ RBFs fit the theoretical accuracy and
work estimates. This fast evaluation will hopefully provide an important tool that will be
easily implemented and integrated into existing RBF interpolation/approximation software,
and will allow faster solutions of large-scale interpolation problems. We plan to expand the
MATLAB code whose results were presented here, to a general-purpose library of fast RBF
expansion evaluations. Directions for future research follow.

Piecewise Smooth RBFs. The evaluation algorithm can be generalized to piecewise
smooth kernels as developed in [11, 14, 37]. Here ��-����ÃQ10 levels must be employed rather
than two. The kernel is decomposed into a smooth (interpolated from a coarse level) and
a local (directly summed) parts via “kernel softening” near i�3�M [11]. To control the lo-
cal part’s evaluation complexity, local grid refinements should be employed at areas of high
center/evaluation point densities [13].

Fast Fitting. The fast evaluation provides fast matrix-vector multiplication to be inte-
grated to any of the existing iterative methods such as Krylov-subspace method [2, 3, 21, 22,
23]. Moreover, for some piecewise smooth kernels (e.g. GDS) the fitting problem can be
solved by a multigrid cycle within a Full Multigrid (FMG) algorithm, along the lines of [12].
The fast evaluation is again employed to compute residuals. The cost of solving the fitting
problem to a reasonable tolerance (analogous to the truncation errors in discretizing (1.3) at
the centers) is equivalent to � C¯y evaluations of 2 at all centers.
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Appendix A. Calculation of interpolation weights in ��- � 0 operations. The 1-D � th-
order polynomial that interpolates Hy� 7wJ � k:�7�8:9 at HI³ 7�J � k:�7�8:9 can be conveniently expressed using
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the barycentric formula [8]

Üï-�³�043 � k��Þ7�8:9 � 7³&C!³ 7 � 7� k:�Þ7�8:9 � 7³&C!³ 7 3 � k:�67�8:9 ÅÆÆÆÇ � 7³&C�³ 7� k:�Þa 8:9 � a³&C�³ a É#ÊÊÊË � 7 3? � k��67�8:9 è 7 � 7 (
where � 7 3¬-wß a�à8í7 -³ 7 C�³ a 0>0`k:� , L�3 M�(D+�(DPDPIP`( � C¢+ . For equally spaced H�³ 7�J � k:�7�8:9 , it is
shown in [8, p.505] that, up to a multiplicative constant, � 7 3 ->C�+�0 7 � � k:�7 � . Because the � 7
appear symmetrically in the numerator and denominator, the multiplicative constant is incon-
sequential and H*� 7 J � k:�7�8:9 can be precomputed once-for-all. Given ³ , the Lagrange interpolation
weights H è 7 J � k:�7�8:9 are thus computed in ��- � 0 operations using the following algorithm.áè 7 6hCâ� 7 ¦O-�³&C!³ 7 0B( L?3NMO(IPDPDPD( � C¥+áè 6hC � k��67�8:9 áè 7è 7 6hC áè 7 ¦ áè ( L?3cMO(IPDPDPD( � C¥+�P
One should be careful about the numerical stability of the computation. In the second step,
for instance, H áè 7 J � k:�7�8:9 should be sorted to minimize floating-point arithmetic round-off.

Appendix B. Bounds on the derivatives of =^-�i�0 . The GA kernel plays a central role in
deriving the bounds for (4.10), thus we first consider it. We use the well-known result

(B.1) j k±lnm °wãz° p�q 3 ÅÇ +� �B{Ax �ä7�8 �  ð9 j k³å qæ�ç�èPé - è ue� 7 0r) è ÉË #ä7�8 � � � j k±lnmëê ç p�q ( + � � � )&(
Thus, it sufficient to prove bounds for )Õ3U+ and then extend them inductively to any )E�,+ .
Recalling that � is even, we have for )?3,+ that���� ) �)3� �� j k±lnmëê � pq ���� ð 3 +ñ � ����  ð9 j k[å qæ -rC�+y0 � {Ax -vu è 0 � ç�èPé - è u*� � 0>) è

���� ð� u �ñ �  ð9 j k å qæ è � ) è 3�u �
 ) �)4� �� j kµêAq�  ê � 8:9

3 ��� u �- � ¦ � 0 � P
The last equality follows from [1, p. 933]. By induction, we thus obtain

(B.2)

����� » � � j�k±lnm °wãe° p�q» � �� » � �x FDFDF » � �� ����� ð � X ��� u �- � ¦ � 0 �	Z � #ä7�8 � � � j k±lnmëê ç pq � X ��� u �- � ¦ � 0 �NZ � ( + � � � )�P
To derive the bounds for the MQ and IMQ kernels we need the following definition:
DEFINITION B.1. A function

X
is said to be completely monotone on µ M�(¼��0 if

1.

X �gì µ MO(¼��0
2.

X �gì ð -�MO(¼��0
3. -rC�+y0�í ) í)�i í X -i�0�*�M for i?��M and îª3NM�(D+�( � (IPDPIP
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Many radial kernels =±-i�0 used in RBF interpolation have the property that

X -�i�043K=^-rñ i�0
is completely monotone because then the existence and uniqueness of an interpolant is guar-
anteed [15, « 2.1]. For example, the GMQ kernel with | · M (see Table 1.1) can be eas-
ily shown to have this property. Completely monotone functions are also classified by the
Bernstein-Widder theorem [18, Ch.14]:

THEOREM B.2. A function

X -i�0 , i©*ìM , is completely monotone if and only if it can
expressed in the form

(B.3)

X -�i�043¢ ð9 j kSï o )3ð$-�2y0B(
where ð is a nondecreasing bounded measure.

For radial kernels that satisfy

X -�i�0©3 =^-òñ i�0 is completely monotone, this theorem
allows them to be related to the GA kernel. We can thus use the bounds (B.2) to obtain
bounds on (4.10) for these kernels (the validity for differentiating under the integral sign in
(B.3) is justified in [18, p.97]). We illustrate the bounding procedure for the GMQ kernel
with | · M , which has the Bernstein-Widder form

(B.4) ->+tsN-�u�@¼º±@D0 x 0 zD{Ax 3 +� -rC z x 0  ð9 j�k�ï2 zI{�x � � j kSïAlnm °wã4° p�q )	2°(Y| · MO(
as is easily verified by Mathematica. For )�3,+ , make the substitutionj k�ïAlnm1ê � p�q 3 +ñ �  ð9 j k å qæ -rC�+y0 � {Ax - ñ 2Bu è 0 � ç�èPé - è ñ 2Duw³í0>) è P
Differentiating under the integral of (B.4) then gives the bounds���� ) �)3� �� -r+tsc-vue� � 0 x 0 zD{Ax ���� ð � ��� u �- � ¦ � 0 � +� -rC z x 0  ð9 j kSï 2 � {AxDk1l�zI{�x � �>p )¯23 ��� u �- � ¦ � 0 � � - � k:zx 0� ->C z x 0 (Y| · MOP
The last equality follows from the definition of the Gamma function [1, p.255]. Using the GA
kernel property (B.1), the bounds���� » � � -r+tsc-vu�@¼º±@I0rx�0>zD{Ax» � �� » � �x FDFIF » � �� ���� ð � X ��� u �- � ¦ � 0 � Z � +� ->C zx 0  ð9 j k�ï 2 � {�xDk1l zD{Ax � �rp )¯23�X ��� u �- � ¦ � 0 �NZ � � - ��Û�k:zx 0� -rC z x 0 (�+ � � � ) (4| · M�(
follow by induction.

To obtain the bounds for the MQ kernel (i.e. |Õ3,+ ), we again need to relate it to the GA
kernel. The following theorem of Sun (c.f. [18, p.110]) provides the relation:

THEOREM B.3. Let

X -i�0 �ñì ð -M�(¼��0 , continuous at zero, and ## o X -�i�0 be completely
monotone but not constant on -M�(¼��0 . Then it is necessary and sufficient that

X -�i�0 have the
form

(B.5)

X -iw0t3 X -�M�0�s¥ ð9 +�C©j�k�ï o2 )3ð$-�2y0�(Gi�*�M�(
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for some nontrivial Borel measure ð  �µ M�(¼��0�% " satisfying ò l � b ð p 2�k��`)3ð$-�2y0 · � andð$->-�MO(+�>0>0 · � for all � .
For radial kernels =±- ñ i�0Ã3 X -�i�0 satisfying this requirement (e.g. GMQ with M · | ·� ), we can thus use the GA kernel bounds (B.2) to obtain the desired bounds (4.10). The

GMQ kernel with M · | · � , can be expressed in the form (B.5) as follows-r+tsc-vu�@¼º1@D0 x 0 zD{Ax 3 +�C +� ->C z x 0  ð9 j�k�ï2 zD{Ax ( +�C©j�k�ïAlnm °Nãz° p q2 ) )	2°(ÚM · | · � P
as is easily verified by Mathematica. Upon differentiating, the terms independent of º vanish
and we are left with the exact same problem as the GMQ kernel with | · M . Thus, we have
the general result

(B.6)
���� » � � -r+�sc-vu�@¼º1@I0 x 0 zD{Ax» � �� » � �x FDFIF » � �� ���� ð � X ��� u �- � ¦ � 0 �NZ �  � - ��Û`k�zx 0� ->C z x 0  (�+ � � � ) (4| · � P

The MQ and IMQ bounds are given by |T3ì+ and |T3ôC�+ , respectively. We expect similar
result for |E� � by integrating (B.5) the necessary number of times.

REFERENCES

[1] M. ABRAMOWITZ AND I. A. STEGUN, eds., Handbook of mathematical functions–with formulas, graphs,
and mathematical tables, Dover, New York, 1972.

[2] B. J. C. BAXTER, The interpolation theory of radial basis functions, PhD thesis, Trinity College, University
of Cambridge, 1992.

[3] R. K. BEATSON, J. B. CHERRIE, AND C. T. MOUAT, Fast fitting of radial basis functions: Methods based
on preconditioned GMRES iteration, Adv. Comput. Math., 11 (1999), pp. 253–270.

[4] R. K. BEATSON, J. B. CHERRIE, AND D. L. RAGOZIN, Fast evaluation of radial basis functions: Methods
of four-dimensional polyharmonic splines, SIAM J. Math. Anal., 32 (2001), pp. 1272–1310.

[5] R. K. BEATSON AND L. GREENGARD, A short course on fast multipole methods, in Wavelets, Multilevel
Methods, and Elliptic PDEs, J. Levesley, W. Light, and M. Marletta, eds., Oxford University Press,
Oxford, 1997, pp. 1–37.

[6] R. K. BEATSON AND W. A. LIGHT, Fast evaluation of radial basis functions: methods for 2-dimensional
polyharmonic splines, IMA J. Numer. Anal., 17 (1997), pp. 343–372.

[7] R. K. BEATSON AND G. N. NEWSAM, Fast evaluation of radial basis functions, part I, Comput. Math. Appl.,
24 (1992), pp. 7–19.

[8] J. P. BERRUT AND L. N. TREFETHEN, Barycentric lagrange interpolation, SIAM Rev., 46 (2004), pp. 501–
517.

[9] S. D. BILLINGS, R. K. BEATSON, AND G. N. NEWSAM, Interpolation of geophysical data with continuous
global surfaces, Geophysics, 67 (2002), pp. 1810–1822.

[10] S. D. BILLINGS, G. N. NEWSAM, AND R. K. BEATSON, Smooth fitting of geophysical data with continuous
global surfaces, Geophysics, 67 (2002), pp. 1823–1834.

[11] A. BRANDT, Multilevel computations of integral transforms and particle interaction with oscillatory kernels,
Comput. Phys. Comm., 65 (1991), pp. 24–38.

[12] A. BRANDT AND A. A. LUBRECHT, Multilevel matrix multiplication and fast solution of integral equations,
J. Comput. Phys., 90 (1990), pp. 348–370.

[13] A. BRANDT AND C. H. VENNER, Multilevel evaluation of integral transforms on adaptive grids, in Multigrid
Methods V, W. Hackbusch and G. Wittum, eds., vol. 3 of Lecture Notes in Computational Science and
Engineering, Springer, Berlin and Heidelberg, 1998, pp. 21–44.

[14] , Multilevel evaluation of integral transforms with asymptotically smooth kernels, SIAM J. Sci. Com-
put., 19 (1998), pp. 468–492.

[15] M. D. BUHMANN, Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Ap-
plied and Computational Mathematics, No. 12, Cambridge University Press, Cambridge, 2003.

[16] J. C. CARR, R. K. BEATSON, J. B. CHERRIE, T. J. MITCHELL, W. R. FRIGHT, B. C. MCCALLUM,
AND T. R. EVANS, Reconstruction and representation of 3d objects with radial basis functions, in SIG-
GRAPH ’01: Proceedings of the 28th annual conference on computer graphics and interactive tech-
niques, ACM Press, New York, NY, 2001, pp. 67–76.



ETNA
Kent State University 
etna@mcs.kent.edu

FAST EVALUATION OF RBF EXPANSIONS 287

[17] J. C. CARR, W. R. FRIGHT, AND R. K. BEATSON, Surface interpolation with radial basis functions for
medial imaging, IEEE Trans. Med. Imaging, 16 (1997), pp. 96–107.

[18] E. W. CHENEY AND W. A. LIGHT, A Course in Approximation Theory, Brooks/Cole, New York, 2000.
[19] J. B. CHERRIE, R. K. BEATSON, AND G. N. NEWSAM, Fast evaluation of radial basis functions: methods

for generalized multiquadrics ó�ô , SIAM J. Sci. Comput., 23 (2002), pp. 1549–1571.
[20] L. M. DELVES AND J. L. MOHAMED, Computational Methods for Integral Equations, Cambridge University

Press, Cambridge, 1985.
[21] N. DYN, D. LEVIN, AND S. RIPPA, Numerical procedures for global surface fitting of scattered data by

radial functions, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 639–659.
[22] A. C. FAUL, G. GOODSELL, AND M. J. D. POWELL, A Krylov subspace alogrithm for multiquadric inter-

polation in many dimensions, IMA J. Numer. Anal., 25 (2005), pp. 1–24.
[23] A. C. FAUL AND M. J. D. POWELL, Krylov subspace methods for radial basis function interpolation, in

Numerical Analysis 1999, D. F. Griffiths, ed., Chapman and Hall, London, 1999, pp. 115–141.
[24] B. FORNBERG, E. LARSSON, AND G. WRIGHT, A new class of oscillatory radial basis functions, Comput.

Math. Appl., (2006). In press.
[25] R. FRANKE, Scattered data interpolation: tests of some methods, Math. Comput., 38 (1982), pp. 181–200.
[26] W. GAUTSCHI, The incomplete gamma functions since Tricomi, in Tricomi’s ideas and contemporary applied

mathematics (Rome/Turin, 1997), vol. 147 of Atti Convegni Lincei, Accad. Naz. Lincei, Rome, 1998,
pp. 203–237.

[27] F. GIROSI, Some extensions of radial basis functions and their applications in artificial intelligence, Comput.
Math. Appl., 24 (1992), pp. 61–80.

[28] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, Third ed., Johns Hopkins Studies in the Mathe-
matical Sciences, The John Hopkins University Press, Baltimore, MD, 1996.

[29] R. C. GONZALEZ AND R. E. WOODS, Digital Image Processing, Second ed., Prentice Hall, New Jersey,
2002.

[30] L. GREENGARD AND J. STRAIN, The fast Gauss transform, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 79–
94.

[31] R. L. HARDY, Multiquadric equations of topograpy and other irregular surfaces, J. Geophy. Res., 76 (1971),
pp. 1905–1915.

[32] N. J. HIGHAM, The accuracy of floating point summation, SIAM J. Sci. Comput., 14 (1993), pp. 783–799.
[33] E. J. KANSA, Multiquadrics – a scattered data approximation scheme with applications to computational

fluid-dynamics – I: Surface approximations and parital derivative estimates, Comput. Math. Appl., 19
(1990), pp. 127–145.

[34] , Multiquadrics – a scattered data approximation scheme with applications to computational fluid-
dynamics – II: Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput.
Math. Appl., 19 (1990), pp. 147–161.

[35] D. LEE, Fast multiplication of a recursive block Toeplitz matrix by a vector and its applications, J. Complex-
ity, 10 (1986), pp. 295–305.

[36] D. LEE AND J. H. SHIAU, Thin plate splines with discontinuities and fast algorithms for their computation,
SIAM J. Sci. Comput., 14 (1994), pp. 1311–1330.

[37] O. E. LIVNE AND A. BRANDT, õ roots of the secular equation in ���öõ�
 operations, SIAM J. Matrix Anal.
Appl., 24 (2002), pp. 439–453.

[38] G. ROUSSOS AND B. J. C. BAXTER, A scalable method for many body computations, in Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Eighth European PVM/MPI Users’ Group
Meeting, Santorini/Thera, Greece, September 23–26, Y. Cotronis and J. Dongarra, eds., vol. 2131 of
Lecture Notes in Computer Science, Springer, Berlin and Heidelberg, 2001, pp. 480–488.

[39] , Rapid evaluation of radial basis functions, J. Comput. Appl. Math., 180 (2005), pp. 51–70.
[40] R. SCHABACK, Error estimates and condition numbers for radial basis function interpolants, Adv. Comput.

Math., 3 (1995), pp. 251–264.
[41] M. SHIN AND C. PARK, A radial basis function approach to pattern recognition and its applications, ETRI

Journal, 22 (2000), pp. 1–10.
[42] J. H. STEFFENSEN, Interpolation, Chelsea, New York, 1950.
[43] H. WENDLAND, Piecewise polynomial, positive definite and compactly supported radial functions of minimal

degree, Adv. Comput. Math., 4 (1995), pp. 389–396.
[44] C. A. ZALA AND I. BARRODALE, Warping aerial photographs to orthomaps using thin plate splines, Adv.

Comput. Math, 11 (1999), pp. 211–227.


