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ITERATIVE SINC-CONVOLUTION METHOD FOR SOLVING RADIOSITY
EQUATION IN COMPUTER GRAPHICS*

AHMAD REZA NAGHSH-NILCHIt AND SHAHRAM DAROEET

Abstract. A new and efficient sinc-convolution algorithm is introduced for the numerical solution of the radios-
ity equation. This equation has many applications including the production of photorealistic images. The method of
sinc-convolution is based on using collocation to replace multi-dimensional convolution-type integrals—such as two
dimensional radiosity integral equations—by a system of algebraic equations. The developed algorithm solves for
the illumination of a surface or a set of surfaces when both reflectivity and emissivity of those surfaces are known.
It separates the radiosity equation’s variables to approximate its solution. The separation of variables allows the
elimination of the formulation of huge full matrices and therefore reduces required storage, as well as computational
complexity, as compared with classical approaches. Also, the highly singular nature of the kernel, which results
in great difficulties using classical numerical methods, poses absolutely no difficulties using sinc-convolution. In
addition, the new algorithm can be readily adapted for parallel computation for an even faster computational speed.
The results show that the developed algorithm clearly reveals the color bleeding phenomenon which is a natural
phenomenon not revealed by many other methods. These advantages should make real-time photorealistic image
production feasible.
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1. Introduction. Global illumination simulation (GIS) is essential for realistic render-
ing of virtual scenes. In global illumination, we take the geometric definition of a virtual
scene and we simulate the propagation of light throughout the scene, modeling its visual and
physical effects, such as shadows and reflections [2].

In the past two decades, many computer graphics techniques for simulating the behavior
of light interacting with a macroscopic environment have been developed so that the creation
of high quality photorealistic images is possible. The radiosity method is one of the favorite
methods used in which the exchanges of energy between the objects of the scene are modeled
by the so-called “radiosity equation”.

The rate at which energy leaves a surface is called its radiosity and it is measured by the
rate of energy emitted and reflected from the surface.

Today, much research has been done to achieve a better physically described model and
faster methods with less memory cost, s well as more efficient pre-processing (model produc-
tion processing) and post-processing (rendering) algorithms for solving the radiosity equa-
tion. However, there still is a great need for faster and more accurate methods to meet new
demands. In this paper, a new and efficient algorithm based on the sinc-convolution method
is introduced to meet most of these requirements.

Since the 2-D integrals of the radiosity equation are integral equations of convolution
type, the method of sinc-convolution can easily be adapted for its accurate approximation.
The sinc-convolution method overcomes the formation of huge full matrices in the solution
of multidimensional integral equations which arise in solving the radiosity equation using
classical approaches. Thus, the method reduces the computational complexity by a large
amount. In addition, the highly singular nature of the kernel of the radiosity integral equation,
which causes great difficulty using classical numerical methods, poses absolutely no difficulty
using the sinc-convolution method. Moreover, the new algorithm can readily be adapted for
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parallel computation for even faster computational speed. These advantages make it possible
to achieve real time high quality photorealistic digital images.

2. Radiosity equation. The radiosity equation is a mathematical model for the bright-
ness of a collection of surfaces when their reflectivity and emissivity are given. This equation
is classified as a linear system of two-dimensional singular linear Fredholm equations of the
second kind and is given by [1]

57 -2 [ B@ur.QV(RQise = EP),  Pes,

where B(P) is the brightness or radiosity at point P, E(P) is the function of emissivity at
P € S, the function p(P) gives the reflectivity at P € S where 0 < p(P) < 1, and the
function V (P, Q) is a “line of sight” function. If the points P and @) could “see each other”
along a straight line segment which does not intersect surface S at any other point, then
V(P,Q) = 1; otherwise, V (P, Q) = 0. It is assumed that the surface is a Lambertian diffuse
reflector surface, which means its reflectivity is assumed to be uniform in all directions [1, 5].
The kernel function, g(P, @), is given by [1]

cosfpcosly  [(Q — P).ny][(P — Q).ng]

9PQ="p—qp - P - QI

In the kernel function, n p is the inner unit normal to surface S at point P and fp is the
angle between np and line PQ. ng and ¢ are defined analogously. For example, for the
surfaces of an empty room with M — by — N — by — L dimensions,

Sez ={(2,0,2)[0 <2 <M,0< 2 <L},
and SEC'/:{(x7y70)|0§$§M70§ySN}7

the kernel function g would become

bz
p P Y Tz
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g(Pa Q) = [(ZL' — a)ggfyz T 02]2) PeS,., Q¢ Szya

0, otherwise,

where P = (a,b,¢) and Q = (z,y, 2). To solve the radiosity equation, it is easier to write it in
the parametric form. In the two dimensional parametric form of the radiosity equation, the key
variables, including reflectivity, emissivity, and radiosity, would be two-variable functions for
the it" surface as receiver and 5 surface as transmitter of light energy as follows:

Bi(sat) —p,-(s,t)Z//Bj(u,v)Gi,j(s,t,u,U)V(s,t,u,v)dA]-(u,v)dudv,
J

where B;(s, t) is the radiosity, E; (s, t) is the emissivity, and p;(s, t) is the Lambertian reflec-
tion at point (s, t) on the " surface; and dA;(u,v) is the differential area at point (u,v) of
the j* surface. In addition, G;_; (s, t,u,v) is the form factor and V (s, ¢, u,v) is the “line of
sight” both from point (s, t) on the 4" surface to the point (u, v) on the j** surface.
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We combine the functions of form factors, differential area, and the “line of sight” and
in k;;(s,t,u,v), the kernel function. Then, the radiosity equation becomes:

(2.1) B;(s,t) —pi(S,t)Z//kij(S,t,U,’U)Bj('U/,U)d’U/dU.
J

In the next section, a sinc-convolution approximation algorithm is developed to solve the
radiosity equation defined in (2.1).

3. Sinc-convolution approximation for solving radiosity equation. Here, we briefly
describe an iterative sinc-convolution method and we apply it to solve the radiosity equation.
The detailed description of the method is available in many publications including [3, 7, 9,
12, 13]. To solve the radiosity equation, we assume one source of light in an empty room such
that any surface S in the room is assumed to be un-occluded. We, further, assume that the
room’s length is M, its breadth is IV, and its height is L. We use the sinc-convolution method
to replace the integral equation in (2.1) by a system of algebraic equations in all dimensions.
In effect, we develop a quadrature formula to evaluate the integral equation using a separation
of variables technique.

Let’s assume that there are L + 1 number of surfaces, S, for k = 0,---, L, on the z
axis inside the room such that there are (M + 1) x (N + 1) samples of sinc points, selected
on each of the surfaces, along the = and y axis, respectively, where we would like to calculate
the illumination using the the two dimensional radiosity equation.

Now, in each surface, we set m; = M; + N; + 1 for 4 = 1, 2 and define the sinc points
by zi = ¢ (kh;) where ¢i_1 denotes the inverse function of the mapping functions ¢;. The
selection of the mapping functions, ¢;, depends upon specific regions. An extensive analysis
of selecting a proper mapping function for any specific region is available in [9, 10, 13].

Based on the regions in our problem, the best mapping function for the x transformation

would be ¢(z) = In (M{z) which determines the sinc points z; = %, i=—-M,---.M
[10]. The sinc-convolution method requires the derivative of the mapping function [9, 10, 13].
This is known to be ¢ (z) = % [9, 10]. The same mapping function may also be used
for other axis transformations.

Now, let z denote the set of all integers and let o, be defined by

k.
on = / S 4 ke z.
0

v

Also, let Ir(n_il) be a square matrix of order m; having 61(:!1) as its element where
1

5"

We determine matrices A;, X;,S; and Xi_1 and such that [8, 9, 11, 13]:

51(9_1) =0+

1
(3.1) Ay =hmIGYD, (W) =X,5 X!
1

(3.2) Ay = h217(n_21)D2 (¢, (y)) = X515 1X5 ]
(3.3) As o =hy [I(fl)]TDz ( ! ) = X552 2X;
} e ¢ (y) SRR
As = by [169] D L) Z x,9x:

(3.4) 3—h3[m3 ] 3 7)) = 353.X3
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z

¥
(1) O=x=b X-J' (2) Osx=bl

O=z=]. O=z=1.
¥=0 ¥=N
() x=0 4y Dx=l
Q== Q==
O=z=L z=10
i 5}
15} D=x=hi (6] z=11
Q== Q==
z=L Q=z=L

FI1G. 3.1. The geometry of the scene isa M — by — N — by — L room with origin at O.

where X;,7 = 1,2_1,2_2, 3 are matrices of eigenvectors and

Du(w) = diag [u (:0),) -+ u ()]

where z; shows sinc points for all three dimensions and the diagonal matrix

Si = dla/g [Si_Mia"'7S§Vij| ?

with sj- as the eigenvalues [3].

As we mentioned before, an empty room is considered as the geometry of our scene
where there is no occluded surface. We further assume that the room’s walls have different
colors. The geometry of the scene is shown in Figure 3.1.

Since the considered scene is an empty room, there is no object to block the “lines of
sight” and so the value for V in the kernel function is always equal to 1. With V=1, the
kernels of all surfaces are derived and are tabulated in the Table 3.1.

Following the sinc-convolution algorithm from [7, 8, 11, 12, 13], a special version of
“Laplace transform” of the kernel is required.

3.1. Laplace transform. The sinc-convolution algorithm requires a special form of
“Laplace transform” of kernel of the integral, g(P, @), denoted in quotes, where its Laplace
variables are inverted. It is defined by [3]

G(s,v) / / (z,y)e %)dxdy.

For the kernels given in Table 3.1, we need to compute the “Laplace transform” of the
following integrals:
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The first dimension of the “Laplace transform” integrals of the radiosity equation is com-
puted analytically. However, the second dimension could not be solved analytically and there-
fore we solve it using Gauss-Legendre numerical method. Here, we only demonstrate the
analytical solution procedure for the following two integrals. We extend the procedure to the
other involved integrals by adaptation [3].

[e'S) 1 .
GO I e e e e

oo p e
G I e

We assume 8 = /(y — b)2 + (2 — ¢)?, and find the kernel for the above intergrals, f(z), as

T

@ = gre—ap

Now, if we assume the “Laplace transform” of function f(t) as F'(s), then

L{f'(t)} = sF(s) — £(0).
Solving the above equation, we have [4, 6]

9 9 o0 1 e o0 .772 e
L{f'(t)} = (@ +8 )/ — — ez / I A—
o [+ (@—a)T o [B2+(@—a)T
With the change of variable as £ — a = X for the second integral and performing some
simplification, we arrive at the expression
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TABLE 3.1
Kernel functions for the surfaces of an empty room.

ki1 =0
ki3 = w
[(a2 + N2+ (z — ¢)?]”
kis = y(L—¢)
[(z—a)? +92+ (L -0
k N
U l@—a? N+ (L
vy = a(N —y)
[a2 + (y — N)? + (z — )2]
o (L9 -y)
[(—a)2+ (y — N)2 + (L — o))
b
o [22 4+ b2 + (2 — ¢)2]
k33 =0
kg = z(L —¢)
[22 + (y = b)2 + (L — ¢)*]?
fun — zb
4= [(z —a)? + b2 + z2]2
oty = — az i
@+ -0+
L2
e e —ar T w0t DT
ks = b(L —2)
[(z—a)?+b2+(z— L)‘/-’]2
= a(L —z2)
[a? + (y — b)? + (2 — L))?
kss =0
Koy = b(M — x)
[ — M)+ + (2 — )]
M2
kes = 3
[M?+ (y —b)? + (2 — ¢)?]
ke = (L—c¢)(M —x)

[(z = M)? + (y = b)? + (L — )"

by = Al
[(z —a)2+ N2+ (2 — )2
k14 = ye 5
[(z —a)? +y? + 2]
k1o = y(M - a) i
(M —a)?+y? + (2 —¢)?]
kan =0
Kou = (N —y)
[(z—a)2+ (y — N)2+ 2]
g = (M —a)(N —y) i
[(M—a)?+(y—N)?+(2-¢c)?
_ z(N —b)
[22 + (N — b)2 + (2 — ¢)?]
fisy = xc .
[22 + (y — b)? + ¢?]
k3e = M 5
[M2+ (y — b)* + (2 — ¢)?]
kay = zZ(N —b)

[(z —a)? + (N —b)? + 22

Fag = 2(M —a)
6 . 2
(M —a)* + (y — b)* + 27]
ksy = (N =b)(L-2)
[(z —a)?+ (N —b)2+ (z — L)?]?
L2
ksq = 2
[z —a)? + (5 =7+ (z ~ L)
(M —a)(L-2)
ks = . 5
(M —a)*+(y —b)* + (2 — L)?]
Koy = (N —b)(M —x)
Gz~ M) + (N b + (= — P
(M —x)
kes = 2
[(z— M)+ (y — ) + 7]
k66 =0
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© 1 —= _ i —Ta > .'L'2€_Tm
/0 B+ @—a2f R le /—a (5> + w2]2d$

The values of the right integrals are known and they are documented in [6]. Now with
proper replacements, the integral (3.6) is obtained as [3]
1 —z a 1

L R I Y S s Pl T 7] (e

)
X [E, <_— +z§> exp (—_a +zé> + E; (—_a - zé> exp (—_a — zé>]
s s s s s s s s
—i% [—Ei (—?a + zg) exp (—?a -Hg) + E; (—?a —zé) exp (—?a —l%)] ,

where
gt
Ei = —t.
i(x) /m 7

With a similar procedure, we also obtain a solution for (3.7) as [3, 6]

oo T —Tzd_l a
A @—a?+ -2+ (z-02 T 25 T 1p

X [EZ (—_a -HE) exp (—_a +zé> + E; (—_a - zé) exp (—_a - zé)] +
s s s s s s s s
(1 —a B —a_ .pB
+i (m - %) [—Ei (; —I—'L§> exp (f +l§) +
a

The first integration of the other 2-D integrals of (3.5) are solved in a similar manner. We
could not solve the second integral analytically. Therefore, we solved it numerically using
Gauss-Legendre numerical method. In the next section, we illustrate the sinc-convolution
algorithm using the method of separation of variables.

3.2. Separation of variables of 2-D integrals. Here, we enlist the method of separation
of variables for solving the two-dimensional convolution-type integrals defined in (3.8) below,
used in the radiosity integral equations of (2.1), and rewritten in the form

B(P) = @p(a, b)=E(P), PeS,

where

N M
(3.8) Mmm=A A C(a,y)g(z — a,y — b)dady,

and C(.,.) = B(.)V(.,.). We omit the derivation of the algorithm and refer the readers to the
references [9, 13] for in depth analysis of the method as well as its derivation. The method is
summarized in Table 3.2. The separation of variables of all the 2-D integrals in the radiosity
equation is done analogously [3].



ETNA

Kent State University
etna@mcs.kent.edu

258 A. R. NAGHSH-NILCHI AND SH. DAROEE

TABLE 3.2
Algorithm for approximate solution of p(a, b) at the set of sinc points.

1. Form the array of sinc point zJ(-k) and %(b(k) () atx = 29 for k = 1,2 and

Jj=—Mj,---, My, and then form the array u; ; = [C(zgl), z](-2))].
2. Determine A;, X;, Xi_1 and S;,7i = 1,2.1,2 2, 3 as defined in (3.1) through (3.4).
3. Successively compute:

b? = Xflu.j
th = X5 "0
4. Form the products:
t; = Gay (s(l) 3(2))t+

i,J i %) Vg
where Gzy(sgl) ) 522)) is the "Laplace transform” of g(z, y) defined in (3.1).

5. Successively form the arrays:
b;,_ = Xlt;’_
D.j = le:j

Note: P; ; are the approximations of p(a, b) at the sinc points.

3.3. Sinc basis interpolation. Now, we can use the obtained values of radiosity at the
sinc points to approximate the radiosity values in all points of the scene via the use of sinc
basis interpolation. First, we define function B below [7, 8, 9] as

N1 No

By~ > Y Bai,y)ww (y),

where
sin [L —nh ] _
w(m = ﬂh’" (Fm ) = sinc <¢m nhm>
m(‘pm - nhm) hm
Withm =1,2andn = —M,, + 1, -, Nyy — 1, we have [7, 9, 11, 13]
N
my _ 1 1 (m)]
w = - —w ,
M+ o nz;\”l 1+ enhm "

(m) p = enhm (m)
— m _ - - m
N 1+ pm n:z_M [1+enhmw" ]7

where p,,, = e®™.

4. Approximation results. A computer code has been developed by the authors for
implementing the iterative sinc-convolution method for solving the radiosity integral equation
problem in an empty room with one source of light.
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For the purpose of comparison between photorealistic and non-photorealistic images,
first, a non-photorealistic image of the room is presented and then two samples of images
from the images created by our program is represented [3].

Figure 4.1 shows a non photorealistic image of a given room with one light source and
Figure 4.2 shows an image that is created by our program having seven surfaces with 7-by-7
sinc points on each one of them, and Figure 4.3 shows the results assuming nine surfaces with
9-by-9 sinc points on each of the surfaces.

The results show that our algorithm works well for solving the radiosity problem de-
spite a great decrease of computational complexity. Naturally, increasing the number of sinc
points causes more realistic and accurate images. The issue of computational complexity is
addressed in the following subsection.

4.1. Computational complexity. The major advantage of the sinc-convolution method
over existing methods is a remarkable reduction in computational complexity. In this section,
we compare the computational complexity of the new method with that of the traditional
finite-difference methods in terms of the work required by a computer to achieve desired
precision. To this end, we assume an equal number of discrete points for all three dimensions,
say M. Then, the sinc-convolution algorithm for solving our radiosity equation would require
3000 x M? complex operations counting 5 matrix multiplications for approximating each of
the 30 integrals in each of the (z,y) or (z, ) or (y, #) directions and assuming 10 iterations
to achieve convergence, (3000 = 5 x 30 x 2 x 10).

In addition, the method guarantees an accuracy to within a uniform error of € , with [7]

e ME
Thus, by eliminating M, we get an expression for the complexity Wgrnc(€) , i.e., the work
required to achieve an accuracy of € by the sinc-convolution method [7],

3000 1\°
Wsine(e) = & (log g) )

where c is a constant and usually ¢ = 7.
For finite-difference methods, let us assume the space step size h = Jéﬁ 75 . The method’s
error is known to be [4]

e=0 (3h2).

Using the sinc-convolution method, there is no need for any extra computations for singular
points, and so we did not consider that in the above relations. In addition, we did not consider
the complexity of solving for the “Laplace transform” of the radiosity equation’s kernel using
Gauss-Legendre numerical method. This is justified since the kernel always remains the
same, and therefore, one doesn’t need to compute the “Laplace transform” of the kernel for a
specific number of sinc points more than once. The result could be stored for solving further
radiosity photorealistic problems with the same number of sinc points.

The required number of complex operations for the finite-difference method, thus, is of
the order of O (ckM 2) for some constant ¢ > 1. We selected ¢, = 30 [7]. Thus, the
minimum work (i.e. complexity) required in terms of € — accuracy for solving the radiosity

equation using a finite-difference method is
cp X ' 4
WebD (6 ) > % .

A plot of complexity vs. e—accuracy for both sinc-convolution and finite-difference
methods is given in Figure 4.4.
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F1G. 4.1. Non-photorealistic image of a room.

FIG. 4.2. Photorealistic image of the room with 343 sinc points.

FIG. 4.3. Photorealistic image of the room with 729 sinc points.
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FIG. 4.4. The complexity vs. precision, €, plot for both sinc-convolution and finite-difference methods.

5. Concluding remarks. In this paper, a new and efficient integral equation approach
called sinc-convolution is used to solve the two-dimensional radiosity integral equation prob-
lem. The sinc-convolution algorithm overcomes the formation of huge full matrices and
therefore circumvents the expensive storage and computational complexity difficulties that
are encountered in solving the large matrix problems that are required of the other integral-
equation approaches.

In effect, the sinc-convolution method is a quadrature formula which enables the simul-
taneous evaluation of the 2-D integrals of convolution type at the given sinc points.

The computational results suggest that using a larger number of the sinc points in the x
and y and z directions will improve the performance of the method. This is expected, since
a larger number of sinc points increases the resolution at the cost of higher computational
complexity. In addition, the new algorithm could readily be adapted to parallel computations.
The parallel format results in even faster computational speed. As a practical matter, these
advantages should make real-time computations feasible.
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