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THREE CASES OF NORMALITY OF HESSENBERG’S MATRIX
RELATED WITH ATOMIC COMPLEX DISTRIBUTIONS∗

VENANCIO TOMEO† AND EMILIO TORRANO‡

Abstract. In this work we prove that Hessenberg’s infinite matrix, associated with an hermitian OPS that
generalizes the Jacobi matrix, is normal under the assumption that the OPS is generated from a discrete infinite
bounded distribution of non-aligned points in the complex plane with some geometrical restrictions. This matrix is
also normal if we consider a real bounded distribution with a finite amount of atomic complex points. In this case
we still have normality with infinite points, but an additional condition is required. Some other interesting properties
of that matrix are obtained.
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1. Introduction. Let µ(x) be a positive and finite Borel measure with real support.
It is well known that there is an associated OPS, {Pn(x)}∞n=0, that satisfies a three-term
recurrence relation, with coefficients {an}∞n=1 and {bn}∞n=0.

These coefficients are the entries of a Jacobi tridiagonal matrix J . The spectrum of this
infinite matrix, considered as an operator J : `2 −→ `2, permits us to study the properties of
the measure;, see for instance [5] and [6].

Recently the interest to extend the results of the real case to Borel measures, supported
in some bounded set of the complex plane, has increased; see ([10]). The role of the Jacobi
tridiagonal matrix now is played by the upper Hessenberg matrix D, which is the expression
of Sµ in the NOPS {P̂n(z)}∞n=0. Here Sµ is the multiplication operator by z in Π, the closure
of the polynomials in L2

µ.
An important result of A. Atzmon for the unit disk (see [1]), which was extended in [12]

to a bounded set of the complex plane, says that a matrix M = (cj,k)∞j,k=0, which is HPD, is
a moment matrix, i.e., exists Ω ⊂ �

and µ : Ω −→ � +, with cj,k =
∫
Ω

zjzkdµ(z), if and
only if, the operator D : `2 → `2 is subnormal.

In the sequel we will study three distributions such as this operator D is the minimal
normal extension of itself. This paper extends the results of [11], related to the discrete finite
bounded case.

In section 2 we have introduced lemmas and definitions, and in section 3 we will study
the matrix D and some properties of it. In section 4 we are going to develop the discrete
infinite bounded case. Finally, in sections 5 and 6 we will study the normality of infinite
matrices related to real bounded distributions with a finite or infinite set of complex points.

2. Lemmas and Definitions.
LEMMA 2.1. (page 40 [9]) Let µ(z) be a positive and finite Borel measure with bounded

support Ω ⊂ �
. Let z0 be an arbitrary complex number. Then min

∫
Ω
|Qn(z)|2dµ(z) =

1/Kn(z0, z0), where the minimum is computed as Qn(z) ranges over all complex polyno-
mials of degree at most n with the constraint Qn(z0) = 1. The minimum is attained for

Qn(z) = Kn(z0, z)/Kn(z0, z0), with Kn(z, w) =
∑n

k=0 P̂k(z)P̂n(w), where {P̂k(z)} is
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the normalized OPS associated to µ.
DEFINITION 2.2. Let B(H) be the set of bounded linear transformations from the Hilbert

space H into H. If T ∈ B(H), then T is normal if and only if T HT = TT H .
DEFINITION 2.3. Let T ∈ B(H). Then T is quasi normal if and only if (T HT )T =

T (T HT ).
DEFINITION 2.4. Let T ∈ B(H). Then T is subnormal if and only if T has a normal

extension.
DEFINITION 2.5. Let T ∈ B(H). Then T is hyponormal if and only if T HT−TT H ≥ 0.
DEFINITION 2.6. If T ∈ B(H), the point spectrum of T , σp(T ), is defined by σp(T ) =

{λ ∈ �
: ker(T − λ) 6= {0}}.

LEMMA 2.7. (problems 195 and 203 of [7]) Assume ‖T‖ < +∞. Then T normal ⇒
T quasi normal ⇒ T subnormal ⇒ T hyponormal.

LEMMA 2.8. (problem 207 of [7]) If A is hyponormal, A = B + iC, with B and C
Hermitian and C compact, then A is normal.

3. The infinite Hessenberg matrix D.
Given an infinite Hermitian positive definite matrix (HPD) M = (cij)

∞
i,j=0, coming from

a measure or not, we call M ′ the matrix obtained eliminating from matrix M its first column.
Mn and M ′

n are the corresponding sections of order n of M and M ′ respectively, i.e., the
restrictions to their first n rows and n columns.

¿From M , an infinite Hessenberg matrix D = (dij)
∞
i,j=0 can be constructed such that its

sections of order n satisfy

Dn = T−1
n M ′

nT−H
n = T H

n FnT−H
n ,

where Mn = TnT H
n is the Cholesky decomposition of Mn, and Fn is the Frobenius matrix

associated to Pn(z), where {Pn(z)} is the O.P.S. associated to M , with

Pn(z) =

∣∣∣∣∣∣∣∣∣∣∣

c00 c10 c20 . . . cn0

c01 c11 c21 . . . cn1

...
...

...
. . .

...
c0,n−1 c1,n−1 c2,n−1 . . . cn,n−1

1 z z2 . . . zn

∣∣∣∣∣∣∣∣∣∣∣

.

The triangularity of the matrix Tn, implies that

(3.1) D = T−1M ′T−H = T HSRT−H ,

where SR is the infinite matrix of the shift-right operator in `2. We must be careful, because
T−1, T H and T−H are infinite triangular matrices but they do not define necessarily operators
in `2. In the sequel P̃n(z) will be the monic polynomial and P̂n(z) will be the normalized
polynomial.

LEMMA 3.1. ([1], [12])
If M is an infinite and HPD (Hermitian positive definite) matrix, and ‖D‖ < +∞,

then M is a moment matrix (i.e., the Gram matrix associated with the moments of a positive
and finite Borel measure supported in some set of the complex plane) if and only if D is
subnormal.

PROPOSITION 3.2. If znk is a root of Pn(z) then

znk




P̂0(znk)

P̂1(znk)
...

P̂n−1(znk)


 = Dt

n




P̂0(znk)

P̂1(znk)
...

P̂n−1(znk)


 .
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Proof. We expand P̃n(z) = |Inz − Dn|, and since ‖P̃n(z)‖ = d21d32 . . . dn+1,n, it
follows that

(3.2) zP̂n−1(z) = d1nP̂0(z)+d2nP̂1(z)+d3nP̂2(z)+ . . .+dn,nP̂n−1(z)+dn+1,nP̂n(z).

Taking n = 1, n = 2, . . ., n = n, in (3.2), row by row we have

z




P̂0(z)

P̂1(z)

P̂2(z)
...

P̂n−1(z)




=




d11 d21 0 . . . 0 0
d12 d22 d32 . . . 0 0

...
...

...
. . .

...
...

d1,n−2 d2,n−2 d3,n−2 . . . dn−1,n−2 0
d1,n−1 d2,n−1 d3,n−1 . . . dn−1,n−1 dn,n−1

d1,n d2,n d3,n . . . dn−1,n dn,n







P̂0(z)

P̂1(z)

P̂2(z)
...

P̂n−1(z)




+ dn+1,n




0
0
0
...
1




P̂n(z).(3.3)

We take z = znk, one of the roots of Pn(z). It follows that

znk




P̂0(znk)

P̂1(znk)

P̂2(znk)
...

P̂n−1(znk)




=




d11 d21 0 . . . 0 0
d12 d22 d32 . . . 0 0

...
...

...
. . .

...
...

d1,n−2 d2,n−2 d3,n−2 . . . dn−1,n−2 0
d1,n−1 d2,n−1 d3,n−1 . . . dn−1,n−1 dn,n−1

d1,n d2,n d3,n . . . dn−1,n dn,n







P̂0(znk)

P̂1(znk)

P̂2(znk)
...

P̂n−1(znk)




;

in other words znkvn = Dt
nvn. Hence znk is an eigenvalue of Dt

n and its eigenvec-
tor is

vn = (P̂0(znk), P̂1(znk), . . . , P̂n−1(znk))t.

REMARK 3.3. It is obvious that the eigenvalues of Dn and Dt
n are the same. Complex

conjugation in (3.3) with z = znk, yields

znk




P̂0(znk)

P̂1(znk)
...

P̂n−1(znk)




= DH
n




P̂0(znk)

P̂1(znk)
...

P̂n−1(znk)




.

The eigenvectors of DH
n and Dn are conjugate complex vectors, but we can’t say anything

about Dt
n. We also have that

n∑

k=0

|P̂k(znk)|2 = Kn(znk, znk) = Kn−1(znk, znk) = ‖vn‖2.
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Note that the norm squared of the eigenvector associated to znk is just the evaluation of the
n-th kernel polynomial in the root. In the tridiagonal case, we know that the Christoffel
constant pnk, associated to znk, is pnk = 1/Kn(znk, znk).

PROPOSITION 3.4. Let Dt be a bounded operator, and take λ ∈ �
. Then

limn→∞ Kn(λ, λ) < +∞, if and only if, λ ∈ σp(D
t).

Proof. ⇒) Let λ ∈ �
be such that limn Kn(λ, λ) < +∞. Take z = λ in (3.3). The

sequence of kernel polynomials Kn(λ, λ) =
∑n

k=0 P̂k(λ)P̂k(λ) converges when n tends to
infinity and a consequence, limn→∞ P̂n(λ) = 0. The boundedness of Dt and D implies
that all its entries are bounded by ‖D‖. In particular |dn+1,n| ≤ ‖D‖. The vector in the
right member of (3.3) converges to the null vector. On the other hand Kn(λ, λ) is convergent
and hence (P̂0(λ), P̂1(λ), P̂2(λ), . . .)t ∈ `2, v = (P̂0(λ), P̂1(λ), P̂2(λ), . . .)t, and on taking
limits we conclude that λv = Dtv, where λ ∈ σp(D

t).
⇐) To prove the converse, if λ ∈ σp(D

t), there exists an v ∈ `2 such that Dtv = λv.
We have

λ




v0

v1

v2

...


 = Dt




v0

v1

v2

...


 ,

since

λv0 = d11v0 + d21v1

λv1 = d12v0 + d22v1 + d32v2

λv2 = d13v0 + d23v1 + d33v2 + d43v3

...

λvn−1 = d1nv0 + d2nv1 + . . . + dn,nvn−1 + dn+1,nvn,(3.4)
...

with dn+1,n =
√

|Mn+1| |Mn−1|
|Mn|2 > 0, ∀n ∈ � .

We have only two possibilities: either v0 = 0 or v0 6= 0. If v0 = 0 then v1 = 0, and
if v0 = v1 = 0, then v2 = 0, . . .. Consequently v = 0 and λ is not an eigenvalue. Hence
v0 6= 0. We prove vn = P̂n(λ)v0 by induction.

The result is true for v1. Since d2,1 > 0, v1, we have v1 = λ−d11

d21
v0, but λ − d11 =

P̃1(λ), and d21 = 1
γ1

= ‖P̃1(z)‖; hence, v1 = P̂1(λ)v0. Suppose that vk = v0P̂k(λ),

∀k ≤ n − 1. We need to prove that vn = P̂n(λ)v0. Consider vn in (3.4). By the induction
hypothesis we have1

dn+1,nvn = (λ − dnn)vn−1 − dn−1,nvn−2 − . . . − d1nv0

= (λ − dnn)P̂n−1(λ)v0 − dn−1,nP̂n−2(λ)v0 − . . . − d1nP̂0(λ)v0

= [(λ − dnn)P̂n−1(λ) − dn−1,nP̂n−2(λ) − . . . − d1nP̂0(λ)] v0,

1In the sequel we will suppose that the matrix M is normalized; in other words if c00 6= 1, we divide the matrix
by c00. Obviously we have P̂0(λ) = 1.
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the last parenthesis is substituted by using (3.2), then dn+1,nvn = dn+1,nP̂n(λ)v0. Hence
vn = P̂n(λ)v0, and therefore we have that the eigenvector of λ is proportional to (P̂0(λ),

P̂1(λ), P̂2(λ), . . . , P̂n(λ), . . .)t ∈ `2.
PROPOSITION 3.5. Let µ(z) be a positive and finite measure of Borel with bounded

support Ω ⊂ �
. Let λ be an atomic point of this measure. Then λ ∈ σp(D

t) and λ ∈
σp(D

H).
Proof. Assume that the measure µ has a weight p0 in λ, that is µ(λ) = p0. For any

polynomial Qn(z) such that Qn(λ) = 1, we have that

‖Qn(z)‖2 =

∫

Ω

|Qn(z)|2dµ(z) ≥ |Qn(λ)|2p0 = p0.

This easily follows from the definition of the Lebesgue-Stieltjes integral. By lemma 2.1 we
have

min ‖Qn(z)‖2 = min

∫

Ω

|Qn(z)|2dµ(z) =
1

Kn(λ, λ)
≥ p0,

hence, Kn(λ, λ) ≤ 1/p0. This inequality is true in the limit, so that

0 ≤ lim
n→∞

Kn(λ, λ) =

∞∑

k=0

P̂k(λ)P̂k(λ) ≤ 1

p0
.

Hence the sequence (P̂0(λ), P̂1(λ), P̂2(λ), P̂3(λ), . . .), and its conjugate are in `2. By propo-
sition 3.4, λ ∈ σp(D

t) and λ ∈ σp(D
H).

4. Discrete infinite bounded case.
DEFINITION 4.1. We speak of the discrete infinite bounded case when we assume a

discrete set of bounded complex points Z = {zk}∞k=1 ⊂ �
with weights {pk}∞k=1 ⊂ � ∗

+,
such that

∑∞
k pk < +∞.

For that distribution we have the moment matrix M = (cij)
∞
ij=0, where cjk =∑∞

n=1 zj
nzk

npn. Let D be the associated Hessenberg matrix. Obviously supp(µ) = Z.
As usual (see [3] page 114), Nµ will be the operator multiplication by z in L2

µ. We
know that Nµ is the minimal normal extension of Sµ. Assuming that all the operators that
are in the context are bounded, it is easy to prove that Sµ is unitarily equivalent to the infinite
Hessenberg matrix D, considered as an operator in `2, and Nµ is unitarily equivalent to
operator N , which is the minimal normal extension of D. The next elegant proof is due to
Prof. Raquel Gonzalo.

PROPOSITION 4.2. If
� \ Z is a connected set and the interior of Z is empty, then the

infinite Hessenberg matrix D is a normal operator in `2.
Proof. The set K = Z is compact. As usual we call C(K) to the space of all continuous

functions with support K. The set K satisfies the hypothesis of Mergelyan theorem (see [3]
page 363), and in consequence ∀f ∈ C(K) and ∀ε > 0 , there exists a polynomial P (z) such
that |f(z)−P (z)| < ε. This implies that

∫
supp(µ) |f(z)−P (z)|2dµ(z) < ε. Clearly C(K) =

Π. As we know that C(K) is dense in L2
µ(K), we conclude that Π = L2

µ(K). Therefore we
are in a complete case. It follows that Sµ = Nµ, and also D = N , in consequence D is a
normal operator.

THEOREM 4.3. With the previous hypothesis about Z and if Z ′ ∩ Z = ∅, then

D = UH(δijzi)
∞
i,j=1U, and UHU = UUH = I.
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Here U = V T−H , where T is the Cholesky factor in the decomposition M = TT H , and V
is the Vandermonde matrix of the atoms

V =




√
p1

√
p1z1

√
p1z

2
1 · · ·√

p2
√

p2z2
√

p2z
2
2 · · ·√

p3
√

p3z3
√

p3z
2
3 · · ·

...
...

...
. . .


 = (

√
piz

j−1
i )∞i,j=1.

Proof. We call L = (δijzi)
∞
i,j=1. It is clear that M ′ = V HLV . From D = T−1M ′T−H

it follows that D = T−1V HLV T−H . We have that the elements of the ith. column
of the infinite matrix T−H , are the coefficients of P̂i−1(z) in the basis {zk}. Therefore

U = V T H =
(√

pi P̂j−1(zi)
)∞

i,j=1
. Now we calculate UHU and have (UHU)i,j =

∑∞
k=1 P̂i(zk)P̂j(zk)pk = δij , because the orthogonality of the NOPS on the set Z =

{z1, z2, . . .}. On the other hand the product UUH is

UUH = (
√

pi
√

pj

∞∑

k=0

P̂k(zi)P̂k(zj))
∞
i,j=1.

To prove the statement we need also that (UUH)ij = δij . For that we introduce the
bounded functionals Li : Π → Π such that Li(f) = f(zi). Recall that the inner prod-
uct in Π is 〈P (z), Q(z)〉 =

∑∞
k=1 P (zk)Q(zk)pk, and it is extended to Π as usual. Ob-

viously ‖Li‖ ≤ 1/pi. It is clear that the n-kernel Kn(z, zi) =
∑n

k=0 P̂k(z)P̂k(zi), with
n > j, has the reproducing property, that is 〈Qj(z), Kn(z, zi)〉 = Qj(zi). The function
K(z, zi) = limn Kn(z, zi) defined on Z = {z1, z2, . . .}, has the same property. With the ad-
ditional hypothesis, as the points of Z are isolated, χzi

(z)/pi ∈ C(K). Where χzi
(zj) = δij .

From the previous proposition we have that χzi
(z)/pi ∈ C(K) = Π = L2

µ(K). Hence

〈f(z), K(z, zi)〉 = 〈f(z),
χzi

(z)

pi

〉 = f(zi), ∀f ∈ Π = L2
µ, then χzi

(z) = K(z, zi),

a.e. in L2
µ. In particular χzi

(z) = K(z, zi) at the points with positive measure, i.e.,
K(z, zi) = χzi

(z) on Z. In consequence K(zj , zi) = δij , therefore UUH = I .

5. Real bounded distribution with a finite set of complex points.
THEOREM 5.1. Consider a bounded and real distribution supported in a finite set to a

bounded set of complex points {zk}N
k=1, such that =(zk) 6= 0, k = 1, . . . , N , with weights

{pk}N
k=1. Then the infinite matrix D = T−1M ′T−H is normal.
Proof. Let H be the Hankel matrix associated to the real distribution, i.e., the moment

matrix. Let {zk}N
k=1 be the complex points with weights {pk}N

k=1. The moment matrix is
M = H + L, where L = (li,j)

∞
i,j=0 with2 li,j =

∑N

k=1 zj
kzi

kpk. Actually L is an infinite
matrix, but with rank N . We have Dn = T−1

n M ′
nT H

n , and at the same time we have

Dn =

(
Dn + DH

n

2

)
+

(
Dn − DH

n

2i

)
i.

Since M is a moment matrix D is subnormal by Lemma 3.1, then D is hyponormal. By
Lemma 2.8 we only need to prove that D − DH is a compact operator.

We calculate Dn − DH
n . We have DH

n = T−1
n (M ′

n)HT−H
n , so that

Dn − DH
n = T−1

n M ′
nT−H

n − T−1
n [M ′

n]HT−H
n

= T−1
n

(
M ′

n − [M ′
n]H

)
T−H

n .

2The notation for moment matrices is contrary to the usual.
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We use H ′ and L′ in the same way as M ′ for M . We can write M ′
n = H ′

n + L′
n. Since H ′

n

is a real Hankel matrix, H ′
n − [H ′

n]H = 0, and hence

M ′
n − [M ′

n]H = L′
n − [L′

n]H =




l10 − l10 l20 − l11 . . . ln0 − l1,n−1

l11 − l20 l21 − l21 . . . ln1 − l2,n−1

...
...

. . .
...

l1,n−1 − ln0 l2,n−1 − ln1 . . . ln,n−1 − ln,n−1


 .

It is clear3 that ∀n > N we have

rank
(
M ′

n − [M ′
n]H

)
= rank

(
L′

n − [L′
n]H

)
= N.

The matrix M is a moment matrix and is HPD; hence the matrices Tn and T H
n exist and

are non-singular for every n. The matrix Dn − DH
n is equivalent to L′

n − [L′
n]H , hence,

rank
(
Dn − DH

n

)
= N , ∀n > N . Therefore rank(D−DH) = N . (D−DH) is an operator

of finite rank in `2, and hence is a compact operator. By Lemma 2.8, D is a normal matrix.

6. Real bounded distribution with a infinite bounded set of complex points.
THEOREM 6.1. Consider be a bounded real distribution supported in a bounded set of

infinite complex points {zk}∞k=1 with weights {pk}∞k=1 such that
∑∞

k=1 pk < +∞. If all
the accumulation points of {zk}∞k=1 are in � , then the infinite matrix D = T−1M ′T−H is
normal.

Proof. Let H be the Hankel matrix of the bounded real distribution. The moment matrix
is M = H + L, where L = (li,j)

∞
i,j=0 with li,j =

∑∞
k=1 zj

kzi
kpk. L, H , and M are infinite

positive definite Hermitian matrices.
Since M = TT H , we can write

D − DH = T−1 (H ′ + L′) T−H − T−1 (H ′ + L′)
H

T−H .

Since H ′ − [H ′]H = 0, it follows that D − DH = T−1
(
L′ − [L′]H

)
T−H . We can reorder

the sequence {zk}∞k=1 in a such way that4 =(zk) ≥ =(zk+1). We build the infinite matrices

V =




√
p1

√
p1z1

√
p1z

2
1

√
p1z

3
1 . . .√

p2
√

p2z2
√

p2z
2
2

√
p2z

3
2 . . .√

p3
√

p3z3
√

p3z
2
3

√
p3z

3
3 . . .

...
...

...
...

. . .


 and Z =




z1 0 0 . . .
0 z2 0 . . .
0 0 z3 . . .
...

...
...

. . .




¿From L′ = V HZV , we have [L′]
H

= V HZHV , and L = V HV . Therefore

(6.1) D − DH = T−1
(
V H

(
Z − ZH

)
V

)
T−H =

(
T−1V H

) (
Z − ZH

) (
V T−H

)
.

All the matrices in the last formula are well-defined and the products exist; hence the
associative property holds. In particular, since the factor T −1 is a lower triangular infinite
matrix, the product T−1V H exists element by element, (independently of the fact that the
rows or columns belongs to `2). In the same way V T−H exists. In addition, we are going to
prove that T−1V H and its transposed conjugated matrix V T−H define bounded operators in
`2.

3Expressing Ln as a product of two Vandermonde matrices, with z1, z2, . . . , zn and p1, p2, . . . , pN , we have
Ln = W H

n,N WN,n, since L′
n = W H

n,N ZNWN,n and [L′
n]H = W H

n,NZH
N WN,n , L′

n−[L′
n]H = W H

n,N (ZN−

ZH
N

)WN,n . Hence, rank
(
L′

n − [L′
n]H

)
= rank

(
ZN − ZH

N

)
= N .

4If the terms were equal, we could establish a criterion from left to right and over to under the real axes.
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By hypothesis the diagonal matrix Z − ZH = (2i=(zk)δj,k)∞j,k=1 is such that
limk =(zk) = 0; hence Z − ZH defines a compact operator in `2.

To prove that the matrix V T−H is bounded, we know that in general ‖AHA‖ = ‖A‖2,
and we have that ‖T−1V H‖2 = ‖T−1V HV T−H‖ = ‖T−1LT−H‖.

At the same time T−1MT−H = T−1TT HT = I = T−1(H + L)T−H ; hence,
T−1LT−H = I − T−1HT−H , and T−1LT−H ≥ 0. Since L is positive definite, there-
fore I − T−1HT−H ≥ 0, and we can write

(6.2) 〈Ix, x〉 ≥ 〈T−1HT−Hx, x〉, ∀x ∈ `2.

Obviously (T−1HT−H)H = T−1HT−H since H is a Hankel matrix and, hence, a symmet-
ric matrix. We know that if A = AH , then sup‖x‖=1 |〈Ax, x〉| = ‖A‖. In our case, dividing
by ‖x‖2 in (6.2), and taking the supremum, we have ‖T−1HT−H‖ ≤ 1. Finally

‖T−1LT−H‖ = ‖I − T−1HT−H‖ ≤ ‖I‖+ ‖T−1HT−H‖ ≤ 2,

hence ‖T−1V H‖ = ‖V T−H‖ ≤
√

2. The matrices at both sides of Z − ZH in (6.1) define
bounded operators in `2.

We know (see page 158 in [8] ) that the product of a bounded operator by a compact
one is compact. Applying twice this property in (6.1), it follows that D − DH is a compact
operator. Since M is a moment matrix, D is subnormal, and hence, D is a hyponormal
operator. From lemma 2.8 D is normal.

REMARK 6.2. Theorems 5.1 and 6.1 still hold if the support of the real distribution does
not lie on the real line but on a straight line of the complex plane. Obviously, in Theorem 6.1
it is required that the accumulation points should be on this complex line.
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