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Abstract. We analyze the approximation obtained for the eigenvalues of the Laplace operator by the noncon-
forming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in noncon-
vex polygons, we prove that the eigenvalues obtained with this method give lower bounds of the exact eigenvalues
when the mesh size is small enough.
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1. Introduction. For second order elliptic problems it is known that the eigenvalues
computed using the standard conforming finite element method are always above the exact
ones. Indeed this can be proved using the minimum-maximum characterization of the eigen-
values (see, for example, [4]). Therefore, it is an interesting problem to find methods which
give lower bounds of the eigenvalues. However, as far as we know, only few results in this
direction have been obtained and mainly for finite difference methods. Forsythe proved that
the eigenvalue approximation obtained by standard five points finite differences is below the
eigenvalue of the continuous problem, when the mesh-size is small enough, for some partic-
ular domains and smooth enough eigenfunctions (see [7], [8]). Since that finite difference
method coincides with the standard piecewise linear finite elements with mass lumping on
uniform meshes, one could expect that similar results hold for more general meshes. Al-
though this has not been proved, several numerical experiments suggest that it is true (see
[2]). On the other hand, Weinberger proved that lower bounds can be obtained applying finite
differences on a domain slightly larger than the original one (see [12], [13]). However, the
approximations obtained in this way are of lower order than those given by Forsythe.

In view of these results, a natural question to ask is whether it is possible to find a method
which gives lower bounds, at least asymptotically, for eigenvalues corresponding to nons-
mooth eigenfunctions. It seems reasonable to look among nonconforming methods. Indeed,
if the finite element space is not contained in the Hilbert space where the continuous varia-
tional problem is formulated, one can not know in advance whether the computed eigenvalues
are below or above the exact ones.

In this note we analyze the approximations obtained using the nonconforming piecewise
linear finite element of Crouzeix-Raviart for the Laplace equation. We prove that, when
the exact eigenfunction is singular, the eigenvalues computed with this method using quasi-
uniform meshes are smaller than the exact ones for small enough mesh-size.
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We end the paper with some numerical examples which suggest that the sequence of
eigenvalue approximations obtained by uniform refinement of an initial mesh is monotone
increasing. In particular the numerical experiments show that, although our results are of an
asymptotic character, the Crouzeix-Raviart method gives lower bounds for eigenvalues cor-
responding to singular eigenfunctions even with coarse meshes, which would be a reasonable
starting point for an adaptive procedure.

2. The Eigenvalue Problem. Let ������� be a polygonal domain. We consider the
following eigenvalue problem: �	��
����
 in ���(2.1) 
��� on �����

We denote by ����� the usual inner product in ��������� . We will also use the standard
notation for �� based Sobolev spaces, namely, !#"%$  ������ is the space of functions in �& '�����
such that all its derivatives up to the order ( are in �& ������ and for ) ��* we write +,"-����� �!."%$ �/�0��� .

The variational problem associated with (2.1) is given by: Find � and 
21 +435 �0��� , 
	6��� ,
satisfying

7 � 
 �98'� ��� � 
 �98'�;:<8 1 + 35 �0���=�(2.2) > 
 >@?�ACBED�F �HG �
where 7 � 
 �98'� ��I DKJ 
 J 8 , which is continuous on +43L�0��� and coercive on +435 ����� .

It is well-known that the solution of this problem is given by a sequence of pairs � ��M � 
NM � ,
with positive eigenvalues ��M diverging to OQP . We assume the eigenvalues to be increasingly
ordered: �SR#� 3-TVU@UWUXT � M TVU@U@U . The associated eigenfunctions 
 M belong to the Besov
space Y 3[ZX\9$ ]� ����� , and in particular to the Sobolev space +	3[ZX\_^<`a����� for bdc � (see, for
example, [4] for the definition of these spaces), where e �fG if � is convex and e ��gh (withi being the largest inner angle of � ) otherwise (see [3]).

The approximations of the eigenvalue � and its associated eigenfunction 
 are obatined
as follows:

Let jlk�mon be a triangulation of � such that any two triangles in k<m share at most a vertex
or an edge and let p be the mesh-size; namely, p ��qsrLt�uwv�xWy p u , with p u being the diameter
of the triangle z . We suppose that the family of triangulations k<m satisfies the usual shape
regularity condition, i.e, there exists a constant {.c � such that

m}|~ | T { , where � u is the
diameter of the largest ball contained in z .

Let � m be the nonconforming piecewise linear finite element space of Crouzeix-Raviart
given by:

� m � jl8���8�� u 1�� 3 is continuous in the midpoints of the edges of z :<z 1 k m
and 8 ��� at the midpoints on ���%n��

where � 3 denotes the space of polynomials of degree less than or equal to 1.

Since �<ms��+435 ����� we define the following bilinear form on ��m%O�+�35 �0���
7 m � 
 �[8o� ���uwv�x y

�
u
J 
 m J 8 m �
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So, the nonconforming approximation problem is given by: Find � m and 
 m 1 �<m ,
 m 6��� , such that 7 m � 
 m �[8 m � ��� m � 
 m �98 m � :<8 m 1 � m �(2.3) > 
 m >_? A BEDNF �HG �
It is well-known that the form 7 m�� U � U � is positive-definite on ��m (see, for example,

[5]). Therefore, the approximation problem reduces to a generalized eigenvalue problem
involving positive definite symmetric matrices. It attains a finite number of eigenpairs� � m $ M � 
 m $ M � 3�� M � � y , ��m � dim �<m , with positive eigenvalues which we assume increasingly
ordered: � m $ 3�T�UWU@U�T � m $ � y .

In order to obtain an expression for the difference between �NM and its nonconforming
approximation � m $ M , we will use the “edge average” interpolant � m �/+�35 ������� � m defined as
follows:

For any 
 1 + 35 ����� , �WmN� 
 � 1 �<m is given by

(2.4)
�
� �@m<� 
 � �

�
� 
 :	�a�

where � denotes any edge of any triangle z 1 k�m .
In the next lemma we give some error estimates for this interpolation which will be used

in our subsequent analysis.

LEMMA 2.1. There exists a constant 
 independent of p and 
 such that,

(2.5)

> 
s� �@m<� 
 � >_? A BEDNF T 
Qp " > 
 > �� B DNF for ( �#G � * �
(2.6)

> 
s� � m � 
 � >@?�A BED�F T 
Qp 3[ZX\ > 
 > ��������� �A BEDNF
for �-R e R G �

(2.7)

> 
�� � m � 
 � >@? � BED�F T 
Qp � > 
 > � A � � B DNF �
and,

(2.8)

>
�WmN� 
 � >_? � BED�F T 


> 
 >_? � B DNF �
Proof. From the definition of �lm we have that for any constant vector � 1 � �

(2.9)
�
u
J � 
�� � m � 
 �9� U � �

�
� u � 
�� � m � 
 �[��� U � ��� �

In particular, for � � G � * , ��� y B  F�"!"# is the average of
�  �"!"# on each z 1 k m , and therefore, it

follows from the well-known Poincaré inequality that

(2.10)

> J 
�� J � m � 
 � >_?NA B u F T 
Qp "%^X3 > 
 > � � B u F � ( �.G � * �
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Since 
 � �Wm�� 
 � has vanishing mean value on the sides � of z , it follows from a Poincaré type
inequality for this class of functions (see, for example, [1]) that

> 
�� � m � 
 � >@?�A=B u F T 
Qp > J 
s� J � m � 
 � >_?�A_B u F �
Combining this estimate with (2.10), and summing up the squares of the norms over all the
triangles, we obtain (2.5). Now, (2.6) follows by interpolation of Banach spaces in view of
the definition of the Besov spaces (see [4]).

The estimate (2.7) can be proved exactly with the same arguments used above applied
now to � 3 .

Finally, in order to prove (2.8), we recall that the basis function of the Crouzeix-Raviart
elements associated with the midpoint of a side � can be written as � 3 O � � ����� , where� 3 and � � are the barycentric coordinates corresponding to the vertices of � and � � is that
corresponding to the opposite vertex. Therefore, the absolute value of any basis function is
bounded by * . Then, (2.8) follows immediately from the fact that the absolute value of the
degrees of freedom defining � m � 
 � (see (2.4)) are bounded by

> 
 >@? � B DNF .
In what follows we will use the notation

> � > m for the norm associated with 7 m , namely,

> 8 > m � � 7 m � 8��98'�@�
The next lemma gives a relation between the errors in the eigenvalue and eigenfunction

approximations. We will use the following relation which follows from property (2.9):

(2.11) 7 m ��� m � 
 �_�[8o� � 7 m � 
 �[8o��:<8 1 � m �
LEMMA 2.2. Let � �oM � 
NM � and � � m $ M � 
 m $ M � be the solutions of problems (2.2) and (2.3),

respectively. Then we have

� M �	� m $ M �
> 
 M �4
 m $ M

> � m �	� m $ M
>
�@m�� 
 M � �	
 m $ M

> �? A BEDNF
O � m $ M��

>
�@m�� 
 M � > �? A BED�F � > 
 M > �? A BEDNF�� �(2.12)

Proof. Using (2.11) and the fact that

> 
 m $ M
>@? A B DNF � > 
�M >_? A BEDNF �#G , we have

� M O � m $ M � 7 mN� 
 M ��
 m $ M � 
 M �4
 m $ M �wO * 7 m�� 
 M � 
 m $ M �� 7 mN� 
 M ��
 m $ M � 
 M �4
 m $ M �wO * 7 m�� �@m<� 
 M �=� 
 m $ M �� > 
NM��4
 m $ M
> � m O */� m $ M ��� m � 
NM �=� 
 m $ M �� > 
NM��4
 m $ M
> � m � � m $ M

>
� m � 
NM � ��
 m $ M

> �? A B DNF O � m $ M
> 
 m $ M

> �? A BED�F O � m $ M
>
� m � 
NM � > �? A BED�F �

Therefore,

�oM O � m $ M%�
> 
�Ma��
 m $ M

> � m � � m $ M
>
� m � 
�M � ��
 m $ M

> �? A BED�F O */� m $ M O � m $ M �
>
� m � 
�M � > �? A BEDNF � > 
�M > �? A BEDNF �=�
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and (2.12) follows.

As mentioned above, when � is not convex, the eigenfunctions of problem (2.2) are
usually singular.

We will prove that in the singular case the approximation given by the nonconforming
method (2.3) is below the corresponding exact eigenvalue given by (2.2), i.e., � m $ M T � M ,G T � T �-m , for p small enough.

We will make use of error estimates for the approximation of spectral problems by the
nonconforming elements of Crouzeix-Raviart. These estimates follow from the general the-
ory and have been obtained in [6]. In particular, it is known that there exists a constant 
 ,
which depends on 
 M and � M but is independent of p , such that,

> 
 m $ M ��
NM
> m T 
Qp \ �

(2.13) > 
 m $ M ��
NM
>_?NA BEDNF

T 
Qp �C\ �
with e � gh where i is the maximum angle of � .

In [3] the possible singularities in the solution of the Dirichlet problem on polygonal
domains are characterized exactly in terms of the angles of the domain. Assume that i c��
and, for simplicity, that the other angles are strictly smaller than i (see [3] for the more
general case). It follows from the results of [3] that the solution of problem (2.2) can be
written, in polar coordinates � ��� � � centered at the point corresponding to the angle i , as
�M ��� ������ � � �WO�8 , where � is a constant, � is a smooth function, and 8 is a function smoother
than the first term. Moreover, it is also proved in [3] that � ���� � � � 1 Y 3[ZX\9$ ]� �����
	�Y 3[Z��C$ ]� �����
for any Qc�e .

From this regularity result it follows that 
 M can be approximated in the

> � > m norm by
functions in �<m with order p�\ and in particular the error estimates (2.13) can be obtained.

On the other hand, in [14] and [3] inverse type results were proved which say that, when-
ever a function is approximated in the + 3 norm with order p � by finite element functions
on a suitable family of meshes, then the function is in Y 3 Z�� $ ]� ����� . The arguments of [14]
can be extended to the nonconforming case considered here to show that if a function 
 is
approximated with order p�� by functions in ��m for an appropriate family of meshes, then
the function is in Y 3[Z��C$ ]� �0��� . Therefore, whenever the constant � is different from � (i.e.,
the solution 
 M is singular), which is usually (although not always) the case in practice, it is
natural to assume that

> 
 m $ M � 
 M
> m����@p�\ , and this is the assumption that we make in the

following theorem, which gives the main result of this paper.

THEOREM 2.3. Let �oM and � m $ M be the eigenvalues of problems (2.2) and (2.3), respec-
tively. If 
NM�1 Y 3[ZX\9$ ]� ����� and there exists a constant � such that

> 
 m $ M��	
�M
> m ���WpN\ , withe R G , then, for p small enough, we have that

(2.14) � m $ M T �'M �
Proof. From Lemma (2.2) we know that
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�oM �	� m $ M �
> 
 m $ M��4
�M

> � m �	� m $ M
>
� m � 
NM � �	
 m $ M

> �? A BEDNF
O � m $ M��

>
�@m�� 
 M � > �? A BED�F � > 
 M > �? A BEDNF � �(2.15)

Since 
NM 1 Y 3[ZX\9$ ]� ����� , we know from (2.6) that

>
� m � 
�M � ��
NM >_? A BEDNF T 
Qp 3[ZX\ �

and therefore, by (2.13), we conclude that>
�@m�� 
 M � ��
 m $ M

>_? A B DNF
T 
Qp �C\ �

Consider now the third term of (2.15). Using (2.8) we have

�
�
�

>
� m � 
NM � > �? A BED�F � > 
NM > �? A BEDNF �

�
� T

� D � � m � 
NM � ��
NM �E� � m � 
NM �9O 
NM � T 

> 
�M >@? � BEDNFW> � m � 
NM � ��
NM >_? � B DNF �

Now, from known a priori estimates for elliptic problems on polygonal domains (see, for
example, [10]) it follows that

> 
�M > �_$  T 
 �'M > 
NM > 5 $  for some ),c G . In particular, we have
that, for any polygonal domain, 
<M 1 !.�@$ 3L����� . Then, using now (2.7) , we obtain that

�
�
�

>
�@mN� 
 M � > �?�A=BEDNF � > 
 M > �?�A=B DNF �

�
� T 
Qp � �with 
 depending on 
 M but independent of p .

From our hypothesis, the first term on the right hand side of (2.15) is greater than a con-
stant times p��9\ . So, the second and third terms are of higher order ( p � \ and p�� , respectively).
Therefore, if p is small enough, the sign of �NM � � m $ M is given by the first term in (2.15), so,
we conclude the proof.

3. Numerical Examples. In this section we present the numerical approximations of
the first eigenvalue of problem (2.2) for different domains � . In all the examples the cor-
responding eigenfunction is known to be singular and the hypotheses of Theorem 2.3 are
satisfied.

In all the cases we refine the initial mesh in a uniform way (each triangle is divided in
four similar triangles). We recall that our goal is to obtain lower bounds of the eigenvalues
and this is why we use uniform refinement. In practical applications one should combine this
method with an adaptive procedure. A lower bound (combined with upper bounds obtained
with conforming methods) could be used to have an estimate of the error in order to decide at
which refinement level the adaptive procedure should be started.

The results suggest that the sequence of eigenvalue approximations obtained in this way
is monotone increasing.

First we consider the case of an � -domain. For this domain, it is known that the first
eigenfunction is singular. In Figure 3.1 we show the initial mesh.
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FIG. 3.1. Initial mesh for the L-domain

number of nodes � m $ 3
44 9.02916234407

160 9.20540571806
608 9.46626945159

2368 9.57515200626

Table 1

In the next table we present the numerical approximation of the first eigenvalue.

In our next two examples we take � as nonconvex polygons which are approximations
of different levels to the fractal Koch domain. Also in these cases it is known that the first
eigenfunctions are singular (see [9] , [11]). In Figure 3.2 and Figure 3.3 we show the first
meshes for the two examples.
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FIG. 3.2. Initial mesh for level 1 approximation of the Koch domain
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FIG. 3.3. Initial mesh for level 2 approximation of the Koch domain

In tables 2 and 3 we present the numerical approximation of the first eigenvalues for the
domains of Figures 3.2 and 3.3, respectively.

number of nodes � m $ 3
84 37.00124133068

312 38.84043356529
1200 39.74253482521

Table 2

number of nodes � m $ 3
888 38.875778741698
3233 39.80755771713

Table 3
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