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STRONG RANK REVEALING CHOLESKY FACTORIZATION
�

M. GU AND L. MIRANIAN
�

Abstract. For any symmetric positive definite ����� matrix � we introduce a definition of strong rank revealing
Cholesky (RRCh) factorization similar to the notion of strong rank revealing QR factorization developed in the joint
work of Gu and Eisenstat. There are certain key properties attached to strong RRCh factorization, the importance of
which is discussed by Higham in the context of backward stability in his work on Cholesky decomposition of semi-
definite matrices. We prove the existence of a pivoting strategy which, if applied in addition to standard Cholesky
decomposition, leads to a strong RRCh factorization, and present two algorithms which use pivoting strategies based
on the idea of local maximum volumes to compute a strong RRCh decomposition.

Key words. Cholesky decomposition, LU decomposition, QR decomposition, rank revealing, numerical rank,
singular values, strong rank revealing QR factorization.
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1. Introduction. Cholesky decomposition is a fundamental tool in numerical linear al-
gebra, and the standard algorithm for its computation is considered as one of the most numer-
ically stable among all matrix algorithms. In some applications, it is necessary to compute
decomposition with linearly independent columns being separated from linearly dependent
ones, i.e., compute the rank revealing decomposition, which is not usually achieved by stan-
dard algorithms. One application of rank revealing factorizations is the active-set method dis-
cussed by Fletcher [8]. Also, rank revealing factorization can be used to solve least-squares
problems using the method proposed by Björck [1, 2].

Usually rank revealing factorizations produce a decomposition with two components: the
full-rank portion, and the rank deficient, or redundant, part. In practice, the quality of rank
revealing decomposition is governed by the following two distances: how far from singular
the full-rank portion is, and how close the exact rank deficient part is to the numerical rank
deficient portion, where rank deficiency is estimated with some tolerance. We develop the-
oretical bounds for full-rank and rank deficient components of strong RRCh decomposition,
which are very similar to those obtained for rank revealing QR factorizations, and observe
that using algorithms 3 and 4 significantly smaller bounds are obtained in practice.

In particular, consider Cholesky decomposition�	�	��

��������
��
where

����� ���������� �!�#" ,
�$��� �%�	& �#" �'� �)(+* �-, � �.� �/(+* � �#�-, � � & �/(+* �0�#�1, �0�#� �.�

is a permutation matrix, and
�32

is 46574 identity matrix. The numerical approximation to the
null space of

�
is 8 �$�!9 � � 
� � 
��%� �#� " �

which is governed by matrix : �;� � 
� � 
��< Hence, we need a pivoting strategy that reveals
the linear dependence among columns of a matrix and keeps elements of

8
bounded by some

slow growing polynomials in = and > < Higham in [13] has shown that nearly the tightest
possible upper bound for the error ? � 9A@��� @� 
 � ?%B , where @��� is the computed =757> CholeskyC
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factor, is also governed by : �
which implies that stability of the algorithm depends on how

small ?%: ? B is.
We introduce a strong rank revealing Cholesky (RRCh) decomposition and propose to

perform Cholesky factorization with diagonal pivoting, where on every stage of the factor-
ization we look for the “most linearly independent” column in the “not-yet-factored” portion
of the matrix and swap it with the appropriate column in “already-factored” part of the ma-
trix. This pivoting strategy was first introduced by Gu and Eisenstat in [11] and is known as
maximum local volumes strategy. Since Cholesky factorization requires significantly less op-
erations than QR, algorithms presented in this paper compute strong rank revealing Cholesky
factorization much faster than algorithms that use rank revealing QR factorization.

The rest of the paper is organized as follows. In section 2, we give an overview of the
previous results on rank revealing LU and QR factorizations. In section 3, we introduce a
definition of strong rank revealing Cholesky decomposition, and, in section 4, we discuss the
existence of such factorization. Section 5 contains the first proposed algorithm. Section 6 is
devoted to the second algorithm which is based on convex optimization approach. Complete
pivoting strategy is discussed in section 7, and numerical experiments are presented in section
8. Concluding remarks are in the final section 9.

2. Previous results on rank revealing LU and QR decompositions. Assume
� (* � , �

has numerical rank = < Then, according to [19], the factorization�����	��
B �$� � ���� B � ��� �!�#" � � ��� � � B� B B " �
(2.1)

where
����� ���	��� ( * �1, � �
�	� B ( * �1, � �!� ��� B B ( * � �#� , � �#� � � B � ( * � �!�1, � � � � �!� (* � �#�-, � �!�

and
� �

and
� B are permutation matrices, is a rank revealing LU (RRLU) fac-

torization if � ��
 ����� ����� � 
 �������	�����
� ������� 
 � B B ��� � ��� � 
 ���	��� <
Given any rank-deficient matrix

� ( * � , �
, exact arithmetic Gaussian elimination with

complete pivoting, unlike partial pivoting, will reveal the rank of the matrix. However, for
nearly singular matrices even complete pivoting may not reveal the rank correctly. This is
shown in the following example by Peters and Wilkinson [24]:

� � �   
!
" 9 " 9 " <%<%< 9 "" 9 " <%<%< 9 "

. . .
..."
#�$$$
% <

There are no small pivots, but this matrix has a very small singular value when size of
�

is
sufficiently large.

Several papers, [4, 18, 19], were dedicated to the question of whether there is a pivoting
strategy that will force entries with magnitudes comparable to those of small singular values
to concentrate in the lower-right corner of U, so that LU decomposition reveals the numerical
rank. In [4] the existence of such pivoting is shown for the case of only one small singular
value, and for RRLU factorization


'& < " � the following bound is obtained:? � B B.?�B�( > � � � � � �� � � � 9 > � � �
where �*) denotes + th singular value of

� <
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Later, in [18] generalized case of more than one small singular value is discussed, and
results are summarized in the following theorem:

THEOREM 2.1. [18]
Let

� ( * � , �
be nonsingular, then for any integer = ,

" ( =�� > there exist permutations
� �

and
� B such that � � �	��
B � � � ���� B ��� �0�#� " � � ��� � � B� B B " �

where
�����

is unit lower triangular and
�����

is upper triangular, with
� B B ��� ��� , �	�

bounded by:


 � � , � 
 (�� 
 > � = � � ��� � �
where

� 
 > � = � � >�
=�
 
 > 9 = � 
 � " 9 >�
=�
 
 > 9 = � 
 � � � �� ��� � �
for

" (�� ��� ( > 9 = provided that the quantity inside brackets is positive.
However, bounds obtained in [18] may increase very rapidly (faster than exponential, in

the worst case) because of its combinatorial nature. In [19] the following improved bounds
are obtained:

THEOREM 2.2. [19]
Let

� (+* � , �
with numerical rank = and � � � < <%< � � � � � � � � � <%<%< � � � � � < There

exist permutations
� �

and
� B such that� � �	��
B � � ������ B � ���0�#�#" � � ��� �	� B� B B " �

where
� ���

is unit lower triangular and
� ���

is upper triangular. If� � � �� � � � � � " ����������� � � � � = 
 > 9 = � �"!$#&% 
 = � > 9 = ���
then ? � B B'?%B ( � � � � � � �7� �� � 9 � ��� ��� � �
and

� ��� � 
 � ��� � ��� ��� � � 9 � ��� � �7� �� � � <
Pan, in [23], using Schur Complement factorizations and local maximum volumes, deduced

the following bounds:
THEOREM 2.3. [23]

Let
� ( * �0, �

with � � � < <%< � � � � � � � � � < <%< � � � � � < Then there exist permutations���
and

� B such that � �3�	� 
B � � � ���� B � ���0�#�#" � � ��� � � B� B B " �
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where
�����

is unit lower triangular and
� ���

is upper triangular,� � � � ( ? � B B ? B (�� = 
 > 9 = � � "�� � � � �
and � � � � ��� � 
 � ��� � ��� ��� � �= 
 > 9 = � � " <
These bounds are very similar to those obtained in rank revealing QR factorizations in [6,

11, 15]. One of the definitions of rank revealing QR factorization presented in [6, 15] is the
following: assume � ( * � , �

has numerical rank = , � is orthogonal,
� � ( * �-, �

is upper
triangular with nonnegative diagonal entries,

� � ( * �-, � �!� � & � ( * � �#�-, �0�#�
and

�
is a

permutation matrix. Then we call factorization

� ��� ��� � � � � � � �& � "(2.2)

rank revealing QR (RRQR) factorization if

����� � 
 � � ��� � ��
 � �4 
 = � > � � and ������� 
 & � � ( � � � � 
 � � 4 
 = � > �3�(2.3)

where 4 
 = � > � is a function bounded by low-degree polynomial in = and > < Other, less restric-
tive definitions are discussed in [6, 22].

RRQR factorization was first introduced by Golub [9], who, with Businger [3], developed
the first algorithm for computing the factorization. The algorithm was based on QR with
column pivoting, and worked well in practice. However, there are examples (Kahan matrix,
[20]) where the factorization it produces fails to satisfy condition


'& < � � <
Pierce and Lewis in [25] developed an algorithm to compute sparse multi-frontal RRQR

factorization. In [21] Meyer and Pierce present advances towards the development of an
iterative rank revealing method. Hough and Vavasis in [17] developed an algorithm to solve
an ill-conditioned full rank weighted least-squares problem using RRQR factorization as a
part of their algorithm. Also, a URV rank revealing decomposition was proposed by Stewart
in [26].

In [15] Hong and Pan showed that there exists RRQR factorization with 4 
 = � > � �	 = 
 > 9 = � �"!$#&% 
 = � > 9 = � and Chandrasekaran and Ipsen in [6] developed an efficient
algorithm that is guaranteed to find an RRQR given = .

In some applications, such as rank deficient least-squares computations and subspace
tracking, where elements of

� � �� ���
are expected to be small, RRQR does not lead to a stable

algorithm. In these cases strong RRQR, first presented in [11], is being used: factorization
'& < & � is called a strong rank revealing QR (RRQR) factorization if

1. � � 
 � � ��� � � 
 � �

 � 
 = � > � � � � 
 & � � ( � ��� � 
 � � 
 � 
 = � > �3�

2.

 
 � � �� � � � � , � 
 ( 
 B 
 = � > �

for
" (�� ( = and

" ( � ( > 9 = � where 
 � 
 = � > � and 
 B 
 = � > � are functions bounded by
low-degree polynomials in = and > <

Pan and Tang in [22] developed an algorithm that, given ��� "
computes strong RRQR

with 
 � 
 = � > � � 	 " � � B = 
 > 9 = � and 
 B 
 = � > � � � < Later, in [11], a different, but mathe-
matically equivalent algorithm, was presented by Gu and Eisenstat. The new algorithm was
based on the idea of local maximum volumes. The same idea will be used in this paper to
develop an efficient algorithms for computing strong rank revealing Cholesky decomposition.
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3. Strong rank revealing Cholesky decomposition. In this section, we explore the
idea of using significant gaps between singular values to define the numerical rank of a matrix
and introduce strong rank revealing Cholesky decomposition.

Given any symmetric positive definite matrix
� ( * � , �

, we consider a partial Cholesky
decomposition with the diagonal pivoting�	�	��

��������
��
(3.1)

where � � � � ���� ��� �#�!" �)� � � � � & �#" �� � (6* �-, �
,
� � ()* � �!�1, �

,

& � ( * � �#� , � �#� �
and

� 2
is 4 5�4 identity matrix. According to the

interlacing property of singular values, for any permutation
� �

we have� � � 
 ��� � " B ( � � 
 ��� and � � 
 & � ��� � � � � 
 ���
for

" (��
( = and
" ( � ( > 9 = < Hence,� � ��� � 
 ��� � " B ( � � 
 ��� and � ��� � 
 & � ��� � � � � 
 ��� <

Assume that � � 
 ��� � � � � � 
 ��� � � �
so that = would be the numerical rank of

� < Then we
would like to choose permutation matrix

�
in such a way that � ��� � 
 ��� � is sufficiently large

and � ����� 

& � �

is sufficiently small. In this paper we will call factorization

 � < " � a strong rank

revealing Cholesky (RRCh) decomposition if it satisfies the following conditions:

1.
� � � 
 � � � " B � � � 
 ���


 � 
 = � > ��� � � 
 & � � ( � � � � 
 ��� 
 � 
 = � > �
2.


 
 � � 
� � 
� � � � 
 ( 
 B 
 = � > �
for

" (��
( = � " ( � ( > 9 = , where 
 B 
 = � > � and 
 � 
 = � > � are bounded by some low degree
polynomials in = and > <

4. The existence of strong rank revealing Cholesky decomposition. In this section
we prove the existence of permutation matrix

�
which makes a strong RRCh decomposition

possible. It is proven in Theorem 4.2 of this section that permutation matrix obtained using
Lemma 4.1 is the one necessary for strong RRCh decomposition with elements of

� � 
� � 
�
bounded by slow growing function in = and > <

According to the definition given at the end of the previous section, strong RRCh decom-
position requires that every singular value of

���
is sufficiently large, every singular value of

& �
is sufficiently small, and every element of

� � 
� � 
�
is bounded. As first observed in [11],

����� 
 ����� ����� 
 � � ����� 
 � � ����� 
 ��
 � � ����� 
 ��� � B ����� 
 & � �3�
hence

����� 
 ��� ��� ���
	 � � � 
 ��� � � ���
 ����� 
 ����� � �#��� 	 � � � 

& � � <(4.1)

This implies that strong RRCh decomposition also results in a large
����� 
 � � �

.
Let us introduce notation.
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1. If
�

is a nonsingular = 5 = matrix then � � 
 ��� denotes the 2-norm of the � -th row of� � 

and � 
 ��� � 
 � � 
 ���3� <%<%< � � � 
 ��� � <

2. For any matrix

&
, � � 
 & � denotes the 2-norm of the

�
-th column of

& <
3.

� � , �
denotes the permutation matrix obtained by interchanging rows � and

�
in the

identity matrix.
4. In the partial Cholesky factorization

� � ������

of a matrix

� ( * � , � �
where

�
and

�
are defined in section 3, let � � 
 � � be the

pair (
�	� �

).
Now, given = and some real number � � " �

Algorithm 1 below constructs a strong RRCh
decomposition by performing column and row interchanges to maximize

����� 
 � � � <
ALGORITHM 1. Compute strong RRCh decomposition, given = .
 �	� � ��� � � � 
 ��� � ��� � � �
while there exists � and

�
such that

����� 
 @� � ��� ����� 
 � � � ��� �
where

� � � ����������0�#�#" and � ��
 � � , � � � �	� 
� , � � � ��� 
 @� � @� �3� do

Find such � and
�
;

Compute

 � � � �	� � � � 
 � � , � � �1�	� 
� , � � � � and

�
� � � � � , � ��� �
endwhile;
This algorithm interchanges a pair of columns and rows when this increases

����� 
 � � �
by

at least a factor of � < Since there is only a finite number of permutations to perform, and none
repeat, the algorithm stops eventually.

To prove that Algorithm 1 computes strong RRCh decomposition, we first express����� 
 @� � ��� ����� 
 � � � in terms of � � 
 � � �3� 
 & � � � � and � � � 
� � 
� � � � < Observe that
�

is sym-
metric positive definite matrix, hence

� � � � � � �� �
& � "

is a symmetric positive definite square root of
� < Let us write �� � � � � < Then

� ������ 
 � �� �� 
 � where �� is not strictly lower triangular, but instead block lower triangu-
lar:

�� � � � � ���� �
& � " <

Since
�	�	� 
 � �	��� � 
 � 
 � 
 � �� � 
 � �� � 
 � the permutation

�
swaps rows of �� and de-

stroys its lower triangular structure. So we use Givens rotations to re-triangularize it, i.e.,� �� ��
� � � where � is an orthogonal matrix. Then,�	�	� 
 ��
� ��� 
 
� 
 ��
��
� 
 �
where


�
is block lower triangular.

Now assume
� � �� �� 
 and

�	�	� 
 ��
��
� 
 �
where

�
permutes rows � and = � �

of �� < The following lemma expresses
����� 
 
��� ��� ����� 
 ��� �

in terms of � � 
 ��� ��� 
 & � ��� � and
� � � 
� � 
� � � � <

LEMMA 4.1. ����� � 
� � � B����� � ��� � B �$� � � 
� � 
� " B� � � � & � � � � � � � � � � � " B <
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Proof: To prove this lemma we apply Lemma 3.1, [11] to �� 
 obtaining����� � 
� � � B����� � � � � B � � � � 
� � 
� " B� � � � � ��� 	 & ��� � � 
 ��� � " B <
Then we observe that� � ��� 	 & ��� " B ����� � 	 & ������� � 	 & ��� 
 ��� � & ��� �	� 
 & � � � � �
which proves the lemma. �

Let � 
 �	� �6� = � � !
	���
� ��� �1, ��� � � � �!� � � � � 
� � 
� � B� � � � & � � � � � � � � � � ��� B " <
Then, according to Lemma 4.1, Algorithm 1 can be rewritten as follows:

ALGORITHM 2. Compute strong RRCh decomposition, given = .
 �	� � ��� � � � 
 ��� � �
� ��� �
while

� 
 � � �6� = � ��� � do
Find � and

�
such that � � � 
� � 
� � B� � � � & � � � � � � � � � � � � B � � ;

Compute

 �	� � ��� � � � 
 � � , � ���-�	� 
� , � ��� � and

�
� ��� � � , ��� � �
endwhile;
Since Algorithm 1 is equivalent to Algorithm 2, it eventually stops and finds permutation�

for which

� 
 � � � � = � ( � < This implies that condition

 & �

of the definition of strong RRCh
decomposition in section 3 is satisfied with 
 B 
 = � > � � � < Theorem 4.2 discussed below will
imply that condition


 " �
is also satisfied with 
 � 
 = � > � � 	 " � � B = 
 > 9 = ��� which means

that Algorithms 1 and 2 compute strong RRCh decomposition, given = <
THEOREM 4.2. (Theorem 3.2 in [11])
Suppose we have

� � ��� � � �
� �!" <

Let � 
 � � = � � !�	��� , ��� � � � �� � � " B� � � � � � 
 � � � � � 
 � 
� � " B <
If

� 
 � � = � (�� � where � is some constant and 
 � 
 = � > ��� 	 " � � B = 
 > 9 = � , then

� � 
 � � ��� � � 
 � �

 � 
 = � > � � " ( �	( =

and � � 
 � � � ( � ��� � 
 � � 
 � 
 = � > �3� " ( � ( > 9 = <
This theorem, applied to �� 
 � implies condition


 " �
of the definition of strong RRCh decom-

position, and hence the existence of RRCh decomposition is proved.
Theorem 4.2 and Lemma 4.1 combined together lead to Algorithm 3 which, on every

step of the Cholesky decomposition with diagonal pivoting, compares @� 
 �	� �6� = � (defined at
the beginning of the next section) with � < If @� 
 � � � � = � � � � then Theorem 4.2 and Lemma
4.1 imply that

����� 
 ��� �
can be made at least � times bigger by interchanging the appropriate

rows in �� < We do the swaps until
����� 
 ��� �

is large enough, i.e. @� 
 �	� �6� = � � � � and then we
resume standard Cholesky decomposition with diagonal pivoting.
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5. Computing strong RRCh decomposition: Algorithm 3. Given a real number � �"
and a tolerance � � Algorithm 3 computes numerical rank = and produces a strong RRCh

decomposition. It is a combination of Algorithms 1 and 2, but uses@� 
 �	� �6� = � � !
	���
� ��� �-, ��� � � � �!� !
	�������� � � � 
� � 
� � � � ��� ��� � & � � � � � � � � � � �����
and computes � � 
 � � � and

� � 
� � 
� recursively for greater efficiency. Observe that @� 
 � � � � = �
is different from

� 
 � � = ��� as defined in Theorem 4.2, but clearly if @� 
 � � �6� = � � � then
� 
 � � = � is also greater than � and hence the result of Theorem 4.2 is applicable to Algorithm
3. In the algorithm below the largest diagonal element of

& �
is denoted by

!
	�� 
 � # 	
	 
 & � ��� <
Update and modification formulas are presented in section 5.1 and 5.2.

ALGORITHM 3.= � � � � � � 
 ����� 
 �	� � � � �
� ��� �
Initialize � 
 ��� � (6* � , � � � � 
� � 
� ( * � , � �#� �
while

!�	�� 
 � # 	
	 
 & � ���
� � do� � 	
��	 !
	�� �
� � � �0�#� 
 !�	�� 
 � # 	
	 
 & � ��� � �= � � = � "
;

Compute � � 
 � �-, � � ��� �-�	� 
�-, � � ��� � � � �
� ��� � �-, � � ��� � �
Update � 
 � � � � � � 
� � 
�

;
while @� 
 � � �6� = ��� � do

Find � and
�

such that �� 
 � � 
� � 
� � � � �� � � or
	 
 & � � � � � � 
 ��� ��� �

Compute � � 
 � � , � � �-��� 
� , � � � ��� �
� ��� � � , � ��� �
Modify � 
 ��� � � � � 
� � 
�

;
endwhile

endwhile

5.1. Updating formulas. Throughout sections 5.1 and 5.2 lower-case letters denote row
vectors, upper-case letters denote matrices, and Greek letters denote real numbers.

On the

 = 9 " �

th step we have�+� � ���-� ����-� � ��� �#��� � " and
� � � �%�-� � & �-� � " <

Let & �-� � � ��
 B� 
 �� ��� " � � �-� ��� ���� " � � � 
�-� � � 
�1� � � 
 � 
 � � � <
By Cholesky factorization, we have that� � � � ���-� �� 
 " � � � � � � � � 
 � 
 � � � � �� � � � � ��-� �9 � � 
 " � 
 " <

Then,

� B� 
 � � ��� � B� 
 � �-� � � � � B� � 
 B for
" (��
( = 9 " � � B� 
 � � � � " � 
 B

and � � 
� � 
� � � � 9 � 
 � � 
 B� � 
 B " <
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5.2. Modifications formulas. We want to interchange the � th and

 = � � �

th diagonal
elements of

�	�	� 

. This corresponds to interchanging the � th and


 = � � �
th rows of

�	�
which will be done by reducing this general interchange to the interchange between the = th
and


 = � " �
st rows.

5.2.1. Interchange within the last > 9 = diagonal elements of
�

. If
� � "

, then
interchanging the


 = �"� �
th and


 = � " �
st columns of

� 

corresponds to interchanging the
 = � " �

st and

 = � � �

th diagonal elements of
�

and
�

. This interchange leaves
�

lower
triangular and

�
block-diagonal and will only swap the first and

�
th columns of

� 
� and� � 
� � 
��<
5.2.2. Interchange within the first = diagonal elements of

�
. If � � = , then we inter-

change the = th and � th rows of
� < This leaves

�
unchanged, and

�
is not lower triangular any

more. But we can re-triangularize it using Givens rotations. Denote
� �-, � ��� @� � , where @�

is lower triangular. Then � �-, � ����� 
 � 
 �1, � � @� � � � 
 @� 
 � @� � @� 
 �
since � affects only the upper left =�5 = corner of

�
, which is identity. Now @��� � ���-, � ��� � 
 ,

hence @� � �� � � � � �� � 
 �-, � � and post-multiplication by an orthogonal matrix does not affect the

2-norms of rows of
� � 
� < This implies that � 
 ��� � just had its = th and � th elements permuted.

Also,
� � 
� � 
� has its = th and � th rows permuted.

The main cost of this reduction comes from computing re-triangularization of
�

after
swapping its � th and = th rows, which takes about � = 
'& > 9 = � flops.

5.2.3. Interchange between = th and

 = � " �

st diagonal elements of
�

. Suppose we
have ���-, ��� � �	�	
�1, � � � � ���-, ��� � ������
 �	
�-, ��� � <
Here,

���-, � � � �
is not lower triangular anymore, so we re-triangularize it

� �-, � � � ��� @� 
 � ,
where @� is lower triangular. Notice that in matrix

���-, ��� � �
only the element


 = � = � " �
needs

to be reduced to zero, hence � is a single Givens rotation matrix that affects only the = th and
 = � " �
st rows of a matrix if multiplied from the right, and the = th and


 = � " �
st column

if multiplied from the left. Let’s assume that we performed the

 = � " �

st step of Cholesky
decomposition zeroing out elements to the right of element

� 
 = � " � = � " � < We have� �1, � � � ������
 �	
�1, � � � � @� � 
 � � @��
 � @��� @��
 �
where we used the fact that � 
 � � � �

, since the upper-left

 = � " � 5 
 = � " �

corner of
�

is just the identity. Write

� � �  
!
� �-� �
� � �

� B ��� ���� � 
 � � 
B ��� �#�1� �
# $$
% and @� � �  

!
� �-� �
� B @�� � ��� �

�
��� �

�� @� 
 � @� 
B ��� �#�1� �
# $$
% �

where

� � 	 � B ��� B � @� ��� �
, @� � � 
 ��� � �	�
� B � � � , and @� B � 
 �
� � 9 ��� B ��� � . From the

expression for
�

we can see that � � �� � � � � ��-� �9 � ��� �" ��� " �



ETNA
Kent State University 
etna@mcs.kent.edu

Strong rank revealing Cholesky factorization 85

where
�)� � ��� � ��-� � is computed using back substitution. Also,� � 
� � 
��� � � 
 �

�
�� B " � � � � 
�-� �� 9 � 
 � �" ����� ��� 
B��� � 


� � " �
so that

� B � � ��1� � � � ��� � � �)� � 
�-� � � 
 � ���"� 
 � � ������� B �	� � ��� <
It follows that @� � �� � � � � ��-� �9 � B � � ��-� � � @� �" � @� � � � � � ��-� �9 
 � � � � � ��� @� �" � @� � �

and

@� � 
� @� 
� � � 
 " 9 ��� B � 
 @� � ��� � 
 9 
 ��� � 
 @� � � � � 
 � � � 
�-� � � 
 9 
 � 
 � � � � 
 � @� � � @�� � � 
 @� � � @� � � @� " < Sim-

plifying, " 9 ��� B � 
 @� � � � " 9 � B � � B � � B � � B � � � � 
 @� � � � � � � B <
We also have� � 
�-� � � 
 9 
 � 
 � � � � 
 � @� � � @� � ��� �#
 � � ��� 9 � � 
 @� � � @� 9 �#
 � @� � � @�� ��� �#
 
 � � � 9 � @� � ��� @� 9 �#
 � @� � � @�� ����� � 
 @� B � @� 9 � 
 � @� � � @� <
Substituting these relations into the matrix, we get@� � �� @�����$� 
 � B � 
 9 � � 
 � ��� � B � � � � 
 @� B � @� 9 � 
 � @� � � @�� �

� B @� � � @� " <
Then � � 
 @��� ��� " � @� , and

� � 
 @� � � B � � � 
 � � � B � 
 � � � � � � B� � @� B 9 � B� � � B � for
" ( � ( = 9 " <

The cost of the

 = � " �

st step of Cholesky decomposition is about
&�
 > 9 = � B flops, the cost of

computing
�

is about = B flops, and the cost of computing
� � 
� � 
� is about � = 
 > 9 = � flops,

hence the “grand total” cost of modifications is about � > B � & > = 9 & = B flops.
Reasoning very similar to the analysis performed in [11] section 4.4 shows that the total

number of interchanges (within the inner loop) up to the = -th step of Algorithm 1 is bounded
by =��	� 	�
 � > , which guarantees that the Algorithm 3 will halt.

6. Computing strong RRCh decomposition using max norm and 2-norm estima-
tors: Algorithm 5. In this section we discuss how convex optimization approach can be
used as an alternative to carrying on modifications and updates in sections 5.2 and 5.1 and
present Algorithm 5.

The convex optimization method was first developed by William Hager in [12]. It is
based on the idea of finding a maximum of an appropriate function over a convex set (the
maximum will be attained at a vertex of that set) by jumping from vertex to vertex according
to a certain rule. The vertices can be visited only once, and since we have finitely many
vertices, the algorithm will halt in a finite number of iterations.
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We wish to develop estimators for? � � 
� � 
� ? ��� � � !
	��� , � 
 � � 
� � 
� 
 � , �
and � ��� � 
 � � � � !�	��� 
 � � 
 � � ���

using the method described below, instead of carrying on modifications and updates described
in section 5.

Assume � is an invertible square matrix, and � is any > 5�� matrix, (here � will be
matrix

� �
and � will be

� � 
� � 
� ). Denote?�� ? �����	��

� � � � ��� � 
 � ��� !
	��� 
 � � 
 � � �
and ? � ? ��� � � ��!
	��� , � 
 
 � � � � 
 <
We are going to use the following lemma which is discussed in [14]:

LEMMA 6.1.? � ? ��� � � !
	�����	�� ? ��� ?��?�� ? � � >�� ?�� ? �����	��
�� � !
	�����	�� ?���� ?�B?�� ? � <
Using this lemma and the algorithm discussed in [12] we obtain an estimator for? � � 
� � 
� ? ��� � �

ALGORITHM 4.

Pick � at random, such that ?�� ? ��� "
loop

Compute
� 
 ��� � � 
� � , � 
 � � 
 � � 
� � 
� �

where
� �"! �$#.> 
�
 � ��%'� �&% ��' � 	
��	 !
	�� � 
 � � 


and
�&%

is
'
-th unit vector

if ?��#?�� �(� 
 �
stop

else' � 	 � 	 !
	�� � 
 � 
 �� � ���&% �
end

endloop
Estimator for computing ? � � �� ? �����)��
�� is the same as the previous one with the excep-

tion of different computation of � , which becomes:� � � � � , � 
 � � � �0� where
� � & � � 
� � <

We wish to construct an algorithm similar to Algorithm 3, but using the above estima-
tions instead of carrying on modifications and updates described in section 5. Algorithm 5,
presented in this section, performs regular Cholesky decomposition with diagonal pivoting
until

!
	�� 
 � # 	
	 
 & � � � ( � for some small � < Every, for instance, > � " � th step we use convex
optimization approach to estimate the largest entry of � 
 � � � and max norm of

� � 
� � 
� and
find � and

�
that correspond to these values. While!�	��� , � 
 
 � � 
� � 
� 
 � , � � � � � or

* !
	��� 
�
 & � � � � � !
	��� 
 � � 
 � � ��� ���
we do the interchanges. When there is no need for swaps we estimate � ��� � 
 ��� � to see if" � � ����� 
 ��� � � " � � � 
 ��� � is smaller then � < A simple calculation shows that if we permute � -
th and = -th rows of

���
and re-triangularize it back, obtaining new matrix @��� � ����� � � then
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 = � = ��� " � � � 
 @� � ��� " � � � 
 � � � . Hence if @� ��
 = � = ��� " � � � 
 � � � ( � then we should go
one step back to = 9 "

and consider

 = 9 " �

-st stage of the Cholesky decomposition, since we
do not want to have elements less than � on the diagonal of

� � <
The main advantage of convex optimization approach over modifications and updates

is efficiency. The overall cost of estimations combined with the potential swaps is usually� 
 > B �3� while modifications combined with swaps cost
� 
 >�� � <

ALGORITHM 5.= � � � � � � 
 ����� 
 �	� � � � �
� ��� �
while

!�	�� 
 � # 	
	 
 & � ���
� � do� � 	
��	 !
	�� �
� � � �0�#� 
 !�	�� 
 � # 	
	 
 & � ��� � �= � � = � "
;

Compute � � 
 � �-, � � ��� �-�	� 
�-, � � ��� � � � �
� ��� � �-, � � ��� � �
do

while @� 
 � � �6� = ��� � do
Find � and

�
such that �� 
 � � 
� � 
� � � � �� � � or

	 
 & � � � � � � 
 � � ��� �
Compute � � 
 � � , � � �-��� 
� , � � � ��� �
� ��� � � , � ��� �

endwhile
if
" � � � 
 � � ��� � break endif= � � = 9 " �

enddo
endwhile
In the following table let

8
�

and

8 B be the average number of iterations it took to esti-
mate

!�	��� 
 � � 
 � � ��� and ? � � 
� � 
� ? ��� � .The average of the ratios of the actual values over the

estimated ones is denoted by � � and � B <
Matrix Order Estimation of �����	�
�� �
 ��
���� Estimation of �������������! "! �$# "$#

96 2 3.4635 2 1.3955
Kahan 192 2 3.4521 2 1.0788

384 2 3.4462 2 1.1053
96 2 1.0000 2 1.7684

Extended 192 2 1.0000 2 2.2863
Kahan* 384 2 1.0000 2 1.0000

96 2 2.3714 2 1.1778
Generalized 192 2 1.0000 2 1.9075

Kahan 384 2 1.0000 2 1.9992

On average, it takes about two “jumps” from vertex to vertex of the appropriate convex % to
obtain the desired result. Hence, in algorithm 5 we just solve two systems two times, which
takes about &.= B flops.

There may be only finitely many iterations in the “do-enddo” loop, so the algorithm will
eventually halt.

7. Effects of pivoting on Cholesky factorization.

7.1. Complete Pivoting. In this section we give an example, discovered in [5, sec-
tion 2], of a symmetric positive semi-definite matrix for which Cholesky decomposition with
complete pivoting does not result in strong RRCh decomposition because condition


'& �
of the

definition in section 3 is violated.
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Consider the following matrix, discovered by Higham in [13]:

� 
�� ��� � # 	
	 
 " ��!'� < <%< ��! � � � �
�      
!

" 9 � 9 � <%< < 9 � 9 � < <%< 9 �" 9 � <%< < 9 � 9 � < <%< 9 �" ...
...

...
. . .

...
...

..." 9 � < <%< 9 �
# $$$$$$
%

()* ��� � �
where

� � ��� ��� 
�� �3� ! � � �
# % 
�� �

for some
� < Let us scale � 
�� �3� i.e., put

� 
�� ��� � # 	
	 
 � � � 9" � <%< < � " � � 
�� � and consider matrix

& 
�� ��� � 
�� � 
 � 
�� � < When we perform Cholesky decom-
position with complete pivoting on

& 
�� �3�
we will observe that, because of the way this matrix

is designed, no pivoting will be necessary. Suppose& 
�� ���$� & ��� 
�� � & � B 
�� �& B � 
�� � & B B 
�� � " � � � �� � � � � � " � � � &
� " � � 
� � 
�� �0� � " <

Then & ��� 
�� � � � & � B 
�� ��� � � 
� � 
� <
It is proven in [5, Lemma 2.3] that? & ��� 
�� � � � & � B 
�� � ? B � ? � � 
� � 
� ? B
	 * "

� 
 > 9 � � 
 � � 9 " �
as

�
	

� <(7.1)

Simple calculation shows that ? � � 
� � 
� ? ����� � � 
 " � ��� � � � <
To make the limit proved above more practical, we have to bound

�
away from zero to avoid� # 	
	 
 " ��!'� <%< < ��! � � � �3� and hence

& 
�� �3�
being too singular. We want

! � � �
to be greater than

some fixed tolerance �
�
which usually is on the order of the machine precision. Simple ma-

nipulation with Taylor expansions shows that quantity ? � � 
� � 
� ? ��� � grows like

� � � � � B �
� ��������� �(7.2)

for large
�

instead of a factor of
& �

as in

�� < " � <

The practical growth rate is much slower than the theoretical, but it is still super-
polynomial, implying that Cholesky decomposition with complete pivoting will not be strong
RRCh decomposition because condition


 & �
in the definition is violated.

Matrix
� � 
� � 
� also plays a key role in backwards error analysis for Cholesky decom-

position of semi-definite matrices, as discussed by Higham in [13]. As he shows quantity?%: ?%B � ? � � 
� � 
� ?%B contributes greatly to the accuracy of Cholesky decomposition. If
we perform Cholesky factorization without any of the pivoting strategies described in Algo-
rithms 3 and 4 we get the following bounds obtained by Higham for the error of the Cholesky
decomposition:? � 9 @� � @��
� ?�B ( & � & � 
 � � " � � � � � ?%: ?%B � " � B � ? � ?%B � � 
 � B �3�
where

�
is the machine precision,

�
is some small constant, @� � is the computed

�
-th Cholesky

factor, and
�

is the computed rank of
�

. As discussed in [5, section 4], the above bound is
about the best result that could have been expected and reflects the inherent sensitivity of� 9 � � � 
� (with

� � being the precise
�
-th Cholesky factor) to small perturbations of

� <
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7.2. Generalization of � 
�� � . In this section we construct generalizations to the Kahan
matrix. We construct a matrix, such that Cholesky decomposition with diagonal pivoting fails
to find a strong RRCh decomposition for the same reason as in the previous section: condition
'& �

of the definition of strong RRCh decomposition is violated.
Consider the matrices��� � � � � � <%<%< � �#� � 
 ��� � � ��� � � < <%< � � � � 
 �

where
� �

and � � ( * 2 � �
and 4�� > < We introduce an upper triangular matrix � � (6* � � � �

� � 
 � ��� � � ��� �	 " � if i = j� �
if i � j9 � 
� � � � if i � j

<(7.3)

Let’s call matrix � � � � # 	 	 
 " ��! � <%< < ��! � � � � � �
a Generalized Kahan matrix, and consider

matrix
� � � 
� � � with numerical rank = < If we choose column scaling appropriately then

there will be no diagonal swaps during Cholesky decomposition with diagonal pivoting. Then
for matrix

�
we have

� � ���� � � B � 9 � � �� � � � 
� �#� � where � �
is the upper left = 5 = corner of

� �#� � �
is the top = rows of

� �#�
and � � �!� is the lower


 > 9 = � rows of � � < Lemma 7.1 proved
below gives a clue as to how to design matrices � �

by choosing
� �

and � � appropriately and
to have

� � ���� � � B grow faster than any polynomial.

Let’s compute
� 
� � � � � � <%< < � � � � 
 � � � �� ���

explicitly.
LEMMA 7.1.

� 
� ��� 
� ���
	 ��� ��
 " � � � � 
�
�
Proof by induction:

Base case: if
� � = � then � 
 � � � 
 � – true.

Inductive step:
�
	
� 9 "

We have that � � � 
 � � �
, hence

� 
��� � 9 � 
��� � � � � 
� 9 � 
��� � � ��� � � 
��� � 9 � 
��� � � ��� B � 
��� B 9 < < < 9 � 
��� � � � � 
 � ���#
��� � <
Combining terms and using the inductive assumption, we get

� 
��� � � � 
��� ���� �� � 	 � � � � 
� � "��� ��� 
��� ���� �� �
	 � � � � 
� ��2 	 � � � 
 " � � 2 � 
2 � � "��� <
After simplifying notation with � � � � � � � 
� � we obtain:

� 
��� � � �#
��� ���� �� � 	 � � � ��2 	 � � ��
 " � � 2 � � " ��
� � 
��� � �� �� � 	 � � � �! " � ��2 	 � � � � 2 � ���� 2���� 2���� � � � � 2 � � 2 � � < < < #% � " ��
� � 
��� � �! ��2 	 � � 2 � ���� 2���� 2������ � 2�� � 2�� � ���� 2���� 2���� 2���� � � 2�� � 2�� � 2�� < < < � " #%
� � 
��� � ���
	 � 
 " � � � � ��� 
��� � ��� 	 � 
 " � � � � 
� � < �
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If we put 4 � " � ��� � "
and � � � � for all � and

�
, then we obtain exactly the Kahan matrix.

In general, matrix � � can have more than one small singular value, whereas the Kahan matrix
has only one.

8. Numerical experiments implemented in Matlab. We used the following sets of test
matrices � :

1. Random: is an >�5�> matrix with random entries, chosen from a uniform distribution
on the interval


 � � " �
.

2. Scaled Random: a random matrix, whose � th row is scaled by factor � � , where� � & �
� and the machine precision is �

� " < " 5 " � � ��� <
3. GKS: an upper triangular matrix whose

�
th diagonal element is

" � � �
and whose
 � � � � element is 9 " � � � � for

� � � <
4. Kahan: we choose

��� � < & &��
5. Extended Kahan: the matrix � � % � ) � � ) � where

% � ) � � # 	
	 
 " ���0� < < < �
� � ) � � �
and

� � ) � �! � ) 9�� � ) �� ) � � )� � ) #%
where we choose + is a power of 2;

� � � � � � " ���� � + 9 " � � � � < & &	� � � � & �
�
� � >

and
� B � � B � " � � � � � "

and � ) ()* ) � )
is a symmetric Hadamard matrix.

6. Extended Kahan*: we choose � � � B + and � � � + B � B ) � � 
 ���
7. Generalized Kahan: described in section 7.2,

���
and � � consist of > � � & blocks;

put = � > � � & ,
����� < & &�� and � � � > <

For each matrix
��� � 
 � we chose > ��
	� � " 
 & � � & � , set � � " � � > and � � � 5 " � � � � 5? � ?�B < In Algorithm 5 we set 4 � � for > �

�� � 4 � " �

for > � " 
 & � 4 � & �
for > � � & � <

The results are summarized in the table below. Theoretical upper bounds for

!
	��� , � � � � 
 � �� � 
 � � � � 	 � � 

& � �� � � � 
 � � � and

!
	��� , � 
 
 � � �� ��� � 
 � , �
are 
 � 
 = � > ��� 	 " � � B = 
 > 9 = � and 
 B 
 = � > � ��� � if k � n�

if k = n
< We observe from our

experiments that theoretical bounds are much larger than these obtained in practice.

Denote � � � ��!
	��� , � � � � 
 ���� � 
 ��� � � 	 � � 

& � �� ��� � 
 ��� � and � B � � !
	��� , � 
 
 � � �� � � � 
 � , �

,
8
� �

number of iterations in the inner while loops; � ! � denotes results of Algorithm 3, and
��� � denotes results of Algorithm 5.
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Matrix Order Rank N
"  " #

Est Mod Est �  Mod Est � # Mod
96 96 0 0 1 1 1 0 0 0

Random 192 192 0 0 1 1 1 0 0 0
384 384 0 0 1 1 1 0 0 0
96 43 0 0 3.10 ��� �����
	

�
3.10 1.54 98 1.54

Scaled 192 82 0 0 3.63 ��� 
����
	
�

3.63 1.18 139 1.18
random 384 158 0 0 6.24 
�� �����
	

�
6.24 1.29 196 1.29

96 95 0 0 1.12 ��� �����
	
#

1.12 0.71 98 0.71
GKS 192 191 0 0 1.09 ��� �����
	

�
1.09 0.71 139 0.71

384 383 0 0 1.07 
�� �����
	
�

1.07 0.71 196 0.71
96 95 1 1 2.54 ��� �����
	

#
2.54 0.98 98 0.98

Kahan 192 191 1 1 1.26 ��� �����
	
�

1.26 0.98 139 0.98
384 298 1 1 8.15 
��������
	

�
8.15 0.98 196 0.98

96 64 0 0 5.27 ��� �����
	
�

5.27 2.60 98 2.60
Extended 192 128 0 0 10.0 ��� 
����
	

�
10.0 5.20 139 5.20

Kahan 384 256 0 0 16.9 
�� �����
	
�

16.9 10.4 196 10.4
96 64 8 32 2.97 ��� �����
	

#
1.49 2.60 2.60 0.38

Extended 192 128 11 64 6.04 ��� �����
	
#

1.09 5.20 5.20 0.19
Kahan* 384 256 3 128 12.1 ��� �����
	

�
1.5 10.4 10.4 0.96

96 94 1 1 4.04 ��� 
����
	
#

4.04 2.35 9.8 2.35
Generalized 192 134 2 2 21.7 ��� �����
	

�
19.9 6.21 13.9 6.59

Kahan 384 131 2 2 13.4 
�� �����
	
�

14.5 4.21 19.6 4.12

9. Conclusion. We have introduced a definition of strong rank revealing Cholesky de-
composition, similar to the notion of strong rank revealing QR factorization. We proved the
existence of such decomposition for any symmetric positive definite > 5 > matrix and pre-
sented two efficient algorithms for computing it. Numerical experiments show that if = is the
numerical rank of

�
, then bounds which govern the gap between = -th and


 = � " �
-st singular

values of matrix
�

and the norm of the approximate null space of
�

obtained in practice us-
ing our algorithms are several orders of magnitude smaller than theoretical ones. Algorithms
presented in this paper produce strong rank revealing Cholesky factorization at lesser cost
than analogous algorithms which use strong rank revealing QR factorization.

REFERENCES

[1] A. Björck, Numerical methods for least squares problems, SIAM, Philadelphia, PA, USA, 1996.
[2] A. Björck, A direct method for the solution of sparse linear least squares problems, in Large scale matrix

problems, A. Björck, R. J. Plemmons, H. Schneider, eds., North-Holland, 1981.
[3] P.A. Businger, G.H. Golub, Linear least squares solutions by Householder transformations, Numer. Math., 7

(1965), pp. 269-276.
[4] T.F. Chan, On the existence and computation of LU factorizations with small pivots, Math. Comp., 42 (1984),

pp. 535-547.
[5] T.C. Chan, An efficient modular algorithm for coupled nonlinear systems, Research Report YALEU/DCS/RR-

328, Sept. 1984.
[6] S. Chandrasekaran, I. Ipsen, On rank revealing QR factorizations, SIAM J. Matrix Anal. Appl., 15 (1994),

pp. 592-622.
[7] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[8] R. Fletcher, Expected conditioning, IMA J. Numer. Anal., 5 (1985), pp. 247-273.
[9] G.H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), pp. 206-

216.
[10] G.H. Golub, C.F. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Baltimore,

MD, USA, 1989.
[11] M. Gu, S.C. Eisenstat, An efficient algorithm for computing a strong rank revealing QR factorization, SIAM

J. Sci. Comput., 17 (1996), pp. 848-869.
[12] W. W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311-317.



ETNA
Kent State University 
etna@mcs.kent.edu

92 M. Gu and L. Miranian

[13] N.J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix, in M.G. Cox and S.J. Ham-
marling, eds., Reliable Numerical Computation, Oxford University Press, 1990, pp. 161-185.

[14] N.J. Higham, Accuracy and stability of numerical algorithms, SIAM, January 1996.
[15] Y.P. Hong, C.T. Pan, Rank revealing QR factorizations and the singular value decompositions, Math. Comp.,

58 (1992), pp. 213-232.
[16] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[17] P. Hough, S. Vavasis, Complete orthogonal decomposition for weighted least squares, SIAM J. Matrix Anal.

Appl., 18 (1997), pp. 369-392.
[18] T.-S. Hwang, W.-W. Lin, E.K. Yang, Rank revealing LU factorizations, Linear Algebra Appl., 175 (1992), pp.

115-141.
[19] T.-S. Hwang, W.-W. Lin, D. Pierce, Improved bound for rank revealing LU factorizations, Linear Algebra

Appl., 261 (1997), pp. 173-186.
[20] W. Kahan, Numerical linear algebra, Canad. Math. Bull., 9 (1966), pp. 757-801.
[21] C.D. Meyer, D. Pierce, Steps towards an iterative rank revealing method, Boeing Information and Support

Services, ISSTECH-95-013, November 30, 1995.
[22] C.-T. Pan, P.T. Tang, Bounds on singular values revealed by QR factorization, BIT, 39(4) (1999), pp. 740-756.
[23] C.-T. Pan, On the existence and computation of rank revealing LU factorizations, Linear Algebra Appl., 316

(2000), pp. 199-222.
[24] G. Peters, J.H. Wilkinson, The least-squares problem and pseudo-inverses, Comput. J., 13 (1970), pp. 309-

316.
[25] D. Pierce, J.G. Lewis, Sparse multi-frontal rank revealing QR factorization, SIAM J. Matrix Anal. Appl., 18

(1997), pp. 159-180.
[26] G.W. Stewart, Updating a rank revealing ULV decomposition, SIAM J. Matrix Anal. Appl., 14 (1993), pp.

494-499.


