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Abstract. We approximate polynomial roots numerically as the eigenvalues of a unitary diagonal plus rank-one
matrix. We rely on our earlier adaptation of the ��� algorithm, which exploits the semiseparable matrix structure to
approximate the eigenvalues in a fast and robust way, but we substantially improve the performance of the resulting
algorithm at the initial stage, as confirmed by our numerical tests.
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1. Introduction. Polynomial root-finding is a fundamental mathematical problem with
a long history [14]. The design of computationally effective polynomial root-finders is still
an active research field. Besides the well-known applications to algebraic-geometric com-
putations, we emphasize here the highly important applications in various areas of signal
processing such as spectral factorization, filter and wavelet design, linear prediction, phase
unwrapping, forming a cascade of lower order systems, etc. (see [10] and the references
therein). In these contexts polynomials are typically generated by the z-transform of finite
length signals, with polynomial order � equal to the number of sample points. Thus, orders
of several hundred are common and, moreover, the coefficients are in general small with most
of the roots located quite close to the unit circle.

Many root-finders are actually implemented as standard softwares in numerical libraries
and environments such as NAG, IMSL, Mathematica1 and Matlab2. Among the most used
general purpose root-finders is the Jenkins-Traub method [9, 8] implemented by IMSL and
Mathematica (NSolve function). It is instructive to compare it with another popular root-
finder, which is employed by the function roots of Matlab and applies the matrix 	�
 al-
gorithm to compute the eigenvalues of the companion matrix associated with the given poly-
nomial. Library implementations of the Jenkins-Traub method usually limit the acceptable
degree of the input polynomial to 50. Numerical experiments reported in [10] confirm that
the accuracy of the Jenkins-Traub program can dramatically deteriorate for relatively small
degrees ( ������ ) even if the roots of the input polynomial are numerically well-conditioned.
On the contrary, the matrix approach based on the 	�
 process yields a norm-wise back-
ward stable root-finding algorithm [5, 18], which produces good results for most inputs. It
has, however, a serious drawback: The resulting method is very space and time consuming
( ��������� and ��������� , respectively). Therefore, as Cleve Moler has pointed out in [11], this
method may not be the best possible because “an algorithm designed specifically for polyno-
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mial roots might use order � storage and � � time.”
In our present work we study numerically reliable algorithms which achieve this goal.

For the sake of completeness, let us also mention the reduction in [4, 19] of polynomial
root-finding to the tridiagonal eigenproblem and the algorithms in [12, 13] supporting the
arithmetic and Boolean time complexity bounds for polynomial root-finding which are theo-
retically optimal up to polylogarithmic factors. We refer the reader to [14, 15, 17] for histori-
cal background and references. So far, however, such methods have been of no practical value
because of their poor accuracy when implemented in finite precision arithmetic. Our present
work is completely different. In this paper we propose a numerically reliable root-finding
algorithm based on the exploitation of a different reduction to a matrix eigenvalue problem
which is solved by the fast adaptation of 	�
 iteration devised in [3]. To the advantage of
our approach, we replace potentially unstable processes, such as the the construction of the
tridiagonal matrix and the computation of its eigenvalues, by more robust computations while
at the same time we keep the computational cost as low as possible.

A disturbing restriction of the algorithm in [3] is that it requires that the input matrix be a
real diagonal plus rank-one matrix. The computation of a matrix in this form having a given
characteristic polynomial leads to nontrivial numerical issues. In particular, the computed
entries can be affected by large absolute errors thus resulting in poor accurate approximations
of the eigenvalues. Moreover, the choice of real diagonal elements is also in conflict with the
customary recipe of selecting the initial approximations on the complex circles centered at
the origin [2]. This recipe is known to support faster convergence.

In this paper we propose and elaborate upon the following simple technique for circum-
venting the restriction in [3] on the input matrix. We assume that the input polynomial � ��� � is
given by its degree � and by a black box for its evaluation at any point � . This setting is quite
general since it covers many different polynomial representations without requiring to per-
form any possibly ill-conditioned basis conversion. We first evaluate � ��� � for � � � and at the
� -th roots of unity (Fourier points) and then compute a unitary diagonal plus rank-one matrix�� �

���� �	 �
�� , where
�� ���������� ���������������� "! , # ��$%# �'& for all ( , and

��
has the characteristic

polynomial � ��� � . (We may generalize this approach by choosing # �)$%# �+* for any fixed posi-
tive * .) Then we choose a Moebius (bilinear) transformation , ��� �.-0/2143�576489/2143�5:6 ,
, ��� ���<; �>=@?A �>=CB , which maps the unit circle into the real axis and thus transforms the matrix��

into a real diagonal plus rank-one matrix , �
�� ��� � � �D� 	E
 � ,

� �:�������� F"�)���������GFH "!
and FH$JILK . We apply the algorithm in [3] to approximate the eigenvalues of the matrix

�
and then obtain the eigenvalues of

��
(that is the roots of � ��� � ) simply by solving a linear

equation in one variable for each eigenvalue. Apart from the application of the algorithm
in [3], the computations essentially amount to evaluating � ��� � at the Fourier points. If we
know the coefficients of � �M� � in the power form and if � �ON"P , then the evaluation cost is
��� �RQTSH� � � flops by using FFT’s. The overall computational cost is dominated at the stage of
the application of the algorithm in [3], which requires ��� � � � flops for all roots (eigenvalues)
(assuming a constant number of 	�
 iterations per eigenvalue). Numerical experiments show
that our root-finder exhibits a stable behavior.

We organize the paper as follows. In Sect. 2 we reduce the polynomial root-finding
problem to solving an eigenvalue problem for a real diagonal plus rank-one matrix. In Sect.
3, for the sake of completeness, we describe our adaptation of the 	�
 algorithm from [3]. In
Sect. 4 we present and discuss the results of our extensive numerical experiments. Finally,
conclusion and discussion are the subjects in Sect. 5.
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2. An eigenvalue algorithm for computing polynomial roots. Assume that we seek
numerical approximations of the roots of the � -degree polynomial � ��� � ,

(2.1) � ��� ��� ;�� � ; � � � ����� � ;  �  � ;   �
$�� � �M�>=�� $ � � ;  ��� � � ; $ I / �

represented by means of a black box for computing the polynomial at any point � . Hereafter
we write 	 ��
 =>& . By using the Lagrange interpolation formula applied on the nodes�� � �  , where � ������� � N���	�� � � I / is a primitive � th root of 1, we find that

� ��� � = ;  �
 � ���  = &��

 �� ��
$�� �

� $ � � � � $ � = ;  ������>= � $ � �

It follows that

(2.2) � �M� � � ���  =L& � � ;  
�  �� ��
$�� �

� $ � � � $ �
�����>= � $ � � �

By evaluating both sides of this formula at the point � � � , we obtain the following simple
expression for the leading coefficients of � �M� � ,

(2.3) ;  �
 �� ��
$�� �

� � � $ �
� = � � � � �

The root-finding problem for � ��� � given in the form (2.2) can be easily recasted into
a matrix setting as the computation of the eigenvalues of a generalized companion matrix�� I /  ��� associated with � ��� � .

THEOREM 2.1. Let � �M� � be the � -th degree polynomial (2.1) and denote by � a primitive
� th root of 1. Define the unitary diagonal plus rank-one matrix

��
by

�� �

 !!!
"
& �

. . . �  �� �
#%$$$
& = &

� ;  

 !!!
"

� � &��� � � �
...� � �  �� � �

#%$$$
&�' & � ����� �  �� �)( �

Then ;  ���* ����+>= �� ��� � ��� � .
Proof. From the Sherman-Morrison-Woodbury formula (see [6], page 50) applied for the

computation of the determinant of ��+>= ��
, we find that

;  ��,*��M�-+>= �� � � ;  ���
 =L& � � & � &

;  
 �� ��
$�� �

� $ � � � $ �
���M�>= � $ � � �

which coincides with � �M� � in the view of (2.2).
An alternative derivation of this theorem relates the matrix

��
to the Frobenius matrix .

associated with � �M� � ,

. �

 !!!!!!
"
� = ; � � ;  & � = ; �,� ;  

& � ...
. . .

. . .
...

& = ;  �� � � ;  

#%$$$$$$
& �
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First observe that

(2.4) . �

 !!!
"
� &
& � �

. . .
. . .

...
& �

#%$$$
& �

 !!!
"
=>& = ;�� � ;  = ; � � ;  ...
= ;  �� � � ;  

#%$$$
& ' � ����� � & ( � � ������� �

where
�  is the last column of the identity matrix + of order � . The unit circulant matrix�

can be diagonalized by the Fourier unitary matrix � � � �
	 $ � ��� 	  ���� � , where � ��� � 
 � ,
that is,

� ��� � ��T�H� � &H� � ������� � �  �� � !�� ��� �
�� � �

By substituting this equation into (2.4), we obtain

(2.5) . ��� �
�� � ����� � ��� � �

���� � ��� � � � ���E�
Since �� � � ��� , we deduce that

(2.6)
��� � � � ' & � � 	  ����� ����� � � 	  �� ��� 	  ����� ( � ' & � ����� ��	  ����� ( � �
 � �

Furthermore, it is easily verified that

(2.7) � � � ;
��� ' � �G&�� � � � � ����� � � �  �� � � ( � � �	 �

Hence, Theorem 2.1 follows when we substitute (2.6) and (2.7) into the equation (2.5).
The advantage of the matrix formulation of the root-finding problem provided by Theo-

rem 2.1 is that well established techniques of numerical linear algebra can be used to compute
the eigenvalues of

��
. Because of its robustness, the 	�
 iteration is usually the method of

choice for finding the eigendecomposition of a matrix numerically [16, 6, 1].
REMARK 2.2. Our second derivation of Theorem 2.1 shows that

��
is similar by a unitary

transformation to the Frobenius matrix . associated with � ��� � . However, the conditioning
of the root-finding problem for a polynomial � ��� � expressed by means of (2.2), (2.3) can be
much different from that for the root-finding problem for the same polynomial given in the
power form. We only point out that the sensitivity of the 	 
 process applied to the matrices��

and . with respect to arbitrary (not structured) initial perturbations of the matrix entries
should be comparable.

Next we modify the matrix
��

to speed up the computation of its eigenvalues by means of
the 	�
 algorithm. We introduce a matrix

� IC/  �� related to
��

and having the following
features:

1. Each zero of � ��� � is obtained from a corresponding eigenvalue of
�

simply by solv-
ing a linear equation in one variable.

2. Approximations of the eigenvalues of
�

can be found by means of the 	�
 algorithm
in a fast and robust way.

Observe that the diagonal matrix
�� �<�������� &H� � ������� � �  ���� ! has entries located on the

unit circle in the complex plane. A bilinear Moebius transformation , ��� � ,

, �M� �C-J/ 1.3�5:6J8 / 1 3�5:6 � , �M� � �
� �>=��
=���� ��� �

� � =���� �� �

for appropriate choices of the parameters
�

, � ,
�

and � maps the unit circle into the real axis.
If the matrix

� + =�� �� is nonsingular, then
� � , �

�� � is well defined and has the form
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of a real diagonal plus rank-one matrix. We recall from [7] that the inverse of a Moebius
transformation is still a Moebius transformation defined by

, ��� �M� ��� � � � �
��� � � �

By combining this property with Theorem 4.3 of [20], we obtain the following simple result.
THEOREM 2.3. Let � � # � # ��� ��� and

� � # � # ��� ��� be two arbitrary nonzero complex

numbers such that ����� 	 �	� � ��� � �� & . Set
� � # � # ��� 
� , �� � � � ��� = ���

, and � � # � # ��� �� . Then

the function , �M� ���
� �>=��
=�� � ��� is a Moebius transformation mapping the unit circle (except

for the point � � � � � ) onto the real axis.
Assume now that , �M� � is prescribed as in the previous theorem,

� +E= � �� is nonsingular
and, moreover, , �

�� � is well defined, i.e., �  �� � � � for � � � ��������� �.=:& . Then we have
that

, �
�� ��� � �

�� =�� + � � � + =�� �� � ��� �
which can be rewritten as

(2.8) , �
�� ��� � � �

�� =�� + � = �
� ;  

�	 �
 � ! � � � + =�� �� � � �
� ;  

�	 �
 � ! ��� �
where the diagonal matrix

� + =�� �� is invertible. From the Sherman-Morrison-Woodbury
formula [6] it follows that

� � � +2=�� �� � � �
� ;  

�	 �
 � ! � � � � � +2=�� � � � � � +2= � �	 
 � � �
where

(2.9) 
 � � � +2=�� �� � ��� �
 � � � �
� ;  

� � 
 � �	 �

Substitute the latter expression for the inverse of � � +E= � �� � � �
� ;  

�	 �
 � into (2.8) and deduce

that

, �
�� ���:, �

�� � = � , �
�� � �	E
 � =

�
� ;  

�	 
 � �
� �
� ;  

�	 � 
 � �	 � 
 � �

which implies that

, �
�� ���:, �

�� � = � � , �
�� � �	 �

�
� ;  

�	 =
� �
� ;  

�	 � 
 � �	 � � 
 � �

Write

(2.10) 	 � � , �
�� � �	 �

�
� ;  

�	 =
� �
� ;  

�	 � 
 � �	 � �

and finally arrive at the following simple representation of , �
�� � .

THEOREM 2.4. Let
�� �

�� = &
� ;  

�	 �
 � be the matrix of Theorem 2.1. Assume that

, ��� ���
� �R=��
=�� � � � is a Moebius transformation determined as in Theorem 2.3 to map the
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unit circle onto the real axis in the complex plane. Moreover, suppose that
� + = � �� is

nonsingular and �  �� � � � for � � � ��������� �.=:& . Then , � � � � � � � = 	 
 � is a real
diagonal plus rank-one matrix, where

� �:�������� , � &�� ��, � � ������� ��, � �  �� � � ! I K  �� �
and 	 and 
 are defined by (2.9) and (2.10), respectively.

Each eigenvalue F  of
�

is related to the corresponding eigenvalues �  of
��

by F  �
, � �  � �� = � � � . Once we have computed the eigenvalues of

�
we may retrieve those of

��
simply by computing

(2.11) �  � � F  � �
��F  � � � &�� ��� � �

Based on the above results we devise an algorithm for approximating the roots of an � th
degree polynomial � ��� � represented by means of a black box for its evaluation. The algorithm
outputs the vector � of the approximations to the roots of � ��� � .

function [ � ] = FastRoots(
�

)
1) Evaluate � ��� � at the Fourier points & � � ��������� �  �� � , where � ��� S�� � N�� � � � � 	��G�
	 �MN � � � � .
2) Compute the leading coefficient ;  of � �M� � by means of (2.3).
3) Form the vectors

�	 and
�
 defined in (2.6) and (2.7), respectively.

4) Choose random complex numbers � and
�
.

5) Choose a random real number
� I � � ��&�! .

6) Define
�

and � as in Theorem 2.3.
7) Compute � � �G$�� $ �:, � � $ ��� � , for ( �D& ������� � � .
8) Compute 	 and 
 by means of (2.9) and (2.10).
9) Compute approximations F  of the eigenvalues of

� = 	 
 � .
10) Approximate �  by using (2.11).

The core of this algorithm is the computation of the eigenvalues of the matrix
� �� = 	 
 � . In the next section we recall our fast adaptation of the classical 	�
 algorithm for

finding the eigenvalues of a real diagonal plus rank-one matrix in a robust and fast way. Our
root-finding method is obtained by incorporating such a variant of 	�
 in the FastRoots
procedure in order to carry out the eigenvalue computation at step 9 efficiently.

3. Fast 	�
 iteration for real diagonal plus rank-one matrices. In this section for the
sake of completeness we summarize the results of [3] for the computation of the eigenvalues
of �� � generalized semiseparable matrices. Let us first specify this class of structured
matrices, denoted by �  , by showing that it includes real diagonal plus rank-one matrices. A
matrix

� � � ; $��  � I /  �  belongs to �  if there exist real numbers B � ��������� B  , complex
numbers � � �����������  ���� , and four vectors 	 �<� � � �����������  ! � IC/  , 
 � � � � �����������  ! � IC/  ,� � � � � ��������� �  ! � I /  and � � � � � ������� ���  ! � I /  such that

(3.1)

�� � ; $�� $ � B $ � � $ � $ � &�� (�� ���
; $��  ��� $ � �$��  �  � & � �"! (%� N#�L($� ���
; $��  � �  � � � $ � $ � � $ �  = �  � $ � &��L(%! �H� N#� ��� � �

where � �$��  �&� $ � � ������� �' � for ( =7&)( � � & and, otherwise, � �$�� $ � � � & . For � � 	 , � � 

and � $ � & , ( �ON�������� � � = & , then it is easily seen that �  contains the real diagonal plus
rank-one matrices of the form

� � ��� 	 
 � with
� �+ �T�H� � B � ����������B  ! I K  �  .
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The computation of the eigenvalues of a generalized semiseparable matrix
� I �� can

be efficiently performed by means of the classical 	�
 iteration with linear shift. The 	�
 al-
gorithm with linear shift applied to the matrix

� � � � defines a sequence of similar matrices
according to the following rule:

(3.2)

� ��� =�� � +  � 	 � 
 � ���� ' � =�� � +  � 
 � 	 � ��� ( � �
where 	 � is unitary, 
 � is upper triangular, +� denotes the identity matrix of order � and � �
is a parameter called the shift parameter. The first equation of (3.2) yields a 	�
 factorization
of the matrix

��� =	� � +  . Under quite mild assumptions the matrix
�
�

tends to an upper
triangular or, at least, a block upper triangular form thus yielding some desired information
about the eigenvalues of

�
.

The following results are proved in [3]. The first of them states that the generalized
semiseparable structure is invariant under the 	�
 iterative process (3.2).

THEOREM 3.1. Let
���

, � � & ������� � � � & , be the matrices generated at the first� � & iterations by the 	�
 algorithm (3.2) starting with
� � � � I��  of the form (3.1),

where 
 � ������� � 
 
� are assumed to be nonsingular. Then, each
� �

, with ����� � � � & ,
belongs to �  . That is, for � ��� � � � & , there exist real numbers B 	

� �� ��������� B 	
� � , 	 � � �O� B 	

� �� ��������� B 	
� � ! � I K  , complex numbers � 	 � �� ������� ��� 	 � � �� � , � 	 � � �O� � 	 � �� ����������� 	 � � �� � ! � I

/  �� � , and four � -vectors 	 	
� � � � � 	 � �� ����������� 	 � � ! � I+/  , 
 	

� � � � � 	 � �� ����������� 	 � � ! � I+/  ,� 	 � � � � � 	
� �� ����������� 	

� � ! � I /  and � 	 � � � � � 	 � �� ������� ��� 	 � � ! � IL/  such that
��� � � ;

	 � �$��  �
admits the following representation:

(3.3)

���� ��� ;
	 � �$�� $ �:B 	 � �$ � � 	

� �$ � 	 � �$ � & � (%� ���
;
	 � �$��  � � 	 � �$ � 	 � �$��  � � 	 � � � &�� ��!L(%� N)�L(%� ���
;
	 � �$��  � � 	 � � � 	 � � � $ � � 	 � �$ � � 	

� �$ � 	 � � = � 	
� � � 	 � �$ � &�� ($! � � N � �"� � �

where � 	 � �$��  � ��� 	 � �$ ��� ������� 	 � ��' � for ( =L&�( � � & and, otherwise, � 	 � ���$�� $ � � � & .
The structured 	�
 algorithm for generalized semiseparable matrices can be defined by

a map � ,

� -"K   /   /   /   /   /  �� �" /78 K   /   /   /   /   /  �� �
�  	 � � ��� � 	 	 � ���� � 
 	 � � ��� � � 	 � � ��� ��� 	 � � ��� ��� 	 � � ��� ��� � � � ���8 �  	 � � � 	 	 � � � 
 	 � � � � 	 � � ��� 	 � � ��� 	 � � � �

which, given a generalized semiseparable representation of
�
� ��� together with the value of

the shift parameter � � � � , yields a generalized semiseparable representation of
�
�

satisfying
(3.2). The next result is concerned with the complexity of such a map. Its proof in [3]
is constructive and provides a fast implementation of the 	�
 iteration (3.2) applied to the
computation of the eigenvalues of a generalized semiseparable matrix

� � � � .THEOREM 3.2. Under the hypotheses of Theorem 3.1, there exists an algorithm which
given an input

 	 � � ��� , 	 	 � � ��� 
 	 � ���� , � 	 � � ��� , � 	 � � ��� , � 	 � ���� and � � ��� returns
 	 � � , 	 	 � �
 	 � � , � 	 � � , � 	 � � and � 	 � � as the output at the cost of ��� � � flops.

If, for a fixed index
�� , the matrices 
 �� and

� �� =�� �� +  are singular, then � �� is an eigenvalue
of
� � , and a deflation technique should be employed. When we work in finite precision

arithmetic, we also apply deflation if the entries of the matrix
� �� satisfy a suitable stopping

criterion. Let
� �� � & - � =�����& - �.=��"! I / 	  ���� � � 	  ���� � be the leading principal submatrix

of
� �� obtained from

� �� by deleting its last � rows and columns. It is easily seen that
� �� � & -

� =�����& - � =��"! admits a representation similar to the one provided by Theorem 3.1. Such
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a representation is found simply by truncating the corresponding representation of the matrix� �� of a larger size. Hence,
� �� � & - � =�����&4- � =��"! I �  �� � and, therefore, all the matrices

generated by means of the 	�
 scheme (3.2) applied to
� � I �  for the computation of its

eigenvalues still satisfy (3.3).

4. Numerical experiments. In this section we describe and discuss the results of our
experiments in which we tested the speed and the accuracy of our root-finding algorithm.
We have implemented in Matlab the function FastRoots described in the Section 2 and
used it for computing the roots of polynomials of both small and large degree. At the step
9 of FastRoots, we applied the structured 	�
 iteration for generalized semiseparable
matrices devised in [3] and summarized in the previous section. To avoid possible unfortunate
selections of the random parameters defining the Moebius transformation , �M� � , we repeated
steps 4–8 twice and defined the final set of parameters that minimized the infinity norm of the
corresponding matrix

� = 	 
 � .
We tested the following polynomials, most of which are chosen or modified from [21]

and [18]:
1. the “Wilkinson polynomial”: � ��� ��� �  � � � ���>= � � ;
2. the scaled “Wilkinson polynomial”: � ��� � � �  ��� � �M�>= � � � � ;
3. the Chebyshev polynomial: � �M� ����� S � � �>��� � ��S � �M� � � � =>& ��� �M� � � & ;
4. the monic polynomial with zeros equally spaced on the curve � ��� � 	���� 	�� ��� � ,
=>& �	� ��& , namely � �M� ��� �  �
 � � �� ���  �
 � ���>= � 	 � ' �� � � ���� = 	 ���
	�� � 	 � ' �� � � �� � � � ;

5. the polynomial � ��� ��� � ��� � ���� � ��� =���S � �� 	 � � � ���� � = 	 ���
	 ��� 	 � � � ���� � � ��� �� � ��� �M� =� � ����S � � � 	 � � � ���� � = � � � 	 ���
	 � � 	 � � � ���� � � , � � � ��� , which has a root distribution sim-
ilar to the transfer function of an FIR low-pass filter [10];

6. the random polynomial � �M� � � �M�  =<&�� � ;  
���  ����$�� � ����� 	 � � � 	"! � ��� � � with � � � $ � �

rand
� 	 rand, � � � ��� rand

� 	 rand.
Tables 4.1, 4.2, 4.3, 4.4 and 4.5 show the results of our numerical experiments for the

polynomials from 1) to 5) by reporting the degree � , an estimate for the maximum condition
number of the roots, the maximum, minimum and average absolute error of the computed root
approximations over 100 experiments. Condition numbers are found from the Lagrange’s
representation of the polynomial � �M� � where we assume that the leading coefficient ;  is
known exactly whereas the computed values #%$ � � � � $ � � satisfy #%$ � � � � $ � � � � � � $ � �G& �'& $ � ,
where # & $ #�� �)(�* � � and * � � is the machine precision. The poor results reported in Table
4.5 can be explained by observing the growth of the coefficients generated at intermediate
steps by the Matlab function poly employed to compute the coefficients of the polynomial
5) given its zeros. Table 4.6 reports the output data for the polynomial 5) in the case where the
values attained by the polynomial on the roots of unity are evaluated by using its factorization
as a product of linear terms. Figure 4.1 covers our tests with random polynomials of the form
6) of high degree. It shows the *�*)*,+)* � and the running � (-�.* for polynomials of degree
���/�� �'N �

'
� for � �O&H���������10 . Our test program returns these values as the output. The

error value is computed as the maximum of the minimum distance between each computed
eigenvalue and the set of “true” eigenvalues computed by the function eig of Matlab. For
each size we carried out 100 numerical experiments. In each figure, the first plot reports the
average value of the errors, and the second plot reports the ratio between the average values of
running time for polynomials having degree ���/�� and ���2� � &�� . Since � � � � & � �,� ��� � � N
and the proposed algorithm for computing all the zeros of � ��� � is expected to have a quadratic
cost, this ratio should be close to 4 for large ���/�� , which was indeed observed in these tests.

5. Conclusion. In this paper we have presented a novel root-finding algorithm based on
eigenvalue computations which is appealing because of its memory requirements and com-
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Wilkinson polynomial
� cond maxerr minerr average
10 1.61e+12 0.07 8.09e-05 0.004
20 6.64e+29 47.2 8.59 18.1

TABLE 4.1

Scaled Wilkinson polynomial
� cond maxerr minerr average
10 4.52e+07 2.42e-06 5.13e-10 5.32e-08
20 3.46e+16 0.4 0.05 0.12

TABLE 4.2

putational cost. By exploiting the structure of the associated eigenvalue problems enables us
to yield a quadratic time using a linear memory space. The results of extensive numerical
experiments confirm the robustness and the effectiveness of the proposed approach. The ac-
curacy of computed results is generally in accordance with the estimates on the conditioning
of polynomial roots for polynomials represented by means of an interpolation on the roots of
unity.
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FIG. 4.1. Random polynomials of degree ����������������� , �! "�# %$ .
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