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MULTIDIMENSIONAL SMOOTHING USING HYPERBOLIC INTERPOLATORY
WAVELETS

�
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Abstract. We propose the application of hyperbolic interpolatory wavelets for large-scale � -dimensional data
fitting. In particular, we show how wavelets can be used as a highly efficient tool for multidimensional smooth-
ing. The grid underlying these wavelets is a sparse grid. The hyperbolic interpolatory wavelet space of level �
uses ��� �
	
������
� basis functions and it is shown that under sufficient smoothness an approximation error of order

����� ����	
��	������ �������! can be achieved. The implementation uses the fast wavelet transform and an efficient indexing

method to access the wavelet coefficients. A practical example demonstrates the efficiency of the approach.
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1. Introduction. Predictive modelling aims to recover functional relations from ob-
served data. More concisely, given a sequence of values of a response variable "$#&%('*)
+!+
+�),"�#.-�'
and a sequence of values of a predictor variable (which is typically a vector), /10 #&%�'% )
+
+!+
),0 #.-�'243 ,
+
+!+ , /10 #�%�'% )!+
+!+
)(0 #.-�'243 predictive modelling recovers a function 5 such that

56/10 #87.'% )!+
+!+�)(0 #.7.'293;: " #.78' +
In the cases considered here the response and the components of the predictors are real num-
bers.

In a smoothing approach to predictive modelling, the function is obtained by minimising
a cost functional

(1.1) <>=?/@5 3;A -B
78C?%

/@56/10 #.78' 3ED " #87.' 3(FHGJI /LK�5�)(KM5 3 )

where I is the smoothing parameter which can be found, e.g., by cross-validation [13] and
the operator K is densely defined in N F /LO

2 3 , and typically is a differential operator. Finding a
good function class which both allows the efficient approximation of the predictive function
5 and uses algorithms which are scalable in the number P of predictor variables 0 % )
+!+
+
),0 2 is
a major challenge. Function classes which have been used in the past for this problem include
radial basis functions [18], artificial neural nets, multivariate adaptive regression splines [13],
and generalised additive models [13]. Here we present a new method for predictive modelling
based on hyperbolic interpolatory wavelets. A related approach which applies sparse grids to
classification is discussed in [9].

First, the function space for 5 should provide a good approximation of a large class of
functions under reasonable smoothness assumptions. Second, the evaluation of the function
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should be fast and the function itself should be represented by a limited number of nonzero
coefficients. As we will see, hyperbolic interpolatory wavelets satisfy both conditions. If
the function space for 5 has a relatively low dimension, then nonlinear approximation theory
provides a feasible technique for the determination of an approximation with few terms [5].
This � -term approximation proceeds by first determining all the coefficients of the expansion
of 5 in the space and then selecting the � most important ones, e.g., by using the threshold
method [8]. This approach is very successful in the case of small P , e.g., in the case of image
processing where P A�� (see [6]). For problems of higher dimension, this approach is not
feasible as the dimension of the underlying function space becomes prohibitively large. In
this case, the � -term approximation technique needs to be preceded by a basis selection
procedure which finds a smaller basis. This step makes the problem “seriously” nonlinear
and typically greedy algorithms are used [13].

Under sufficient smoothness conditions (which are related to the operator K ), hyperbolic
interpolatory wavelet spaces provide a good trade-off between function space complexity and
approximation error. Hyperbolic orthogonal and bi-orthogonal wavelets were introduced in
[7, 10, 11] where error analyses were also given. Further, hyperbolic bi-orthogonal wavelets
have been shown to be effective for the solution of high dimensional elliptic PDEs and IEs
([15, 11]). Here we consider the case of interpolatory wavelets where the interpolation points
form a sparse grid [19]. At the same time as we developed our hyperbolic interpolatory
wavelet approach a related approach was developed which uses sparse grid approximations
for the classification problem [9].

In Section 2 we introduce hyperbolic interpolatory wavelets and discuss their approxi-
mation properties. In Section 3 we discuss the implementation and give an application.

2. Approximation by hyperbolic interpolatory wavelets. Data mining applications
require access to function values on the grid points for further processing. For interpolatory
wavelets the function values on the grid are directly related to the wavelet coefficients and
can be easily retrieved. This is in contrast to orthogonal and biorthogonal wavelets for which
more elaborate summations are required to retrieve the function values on the grid points.
The approximation properties for hyperbolic biorthogonal wavelets have been studied in [7].
In the following we will show that similar estimates can be given for interpolatory wavelets
using a different approach.

In the next subsection some basic properties of one-dimensional interpolatory wavelets
are reviewed. The reader familiar with the literature on this topic can skip this subsection and
move straight to the following subsection which introduces hyperbolic interpolatory wavelets.

2.1. One dimensional interpolatory wavelets. Compactly supported interpolatory
wavelets are defined by compactly supported, interpolatory refinable functions � . A com-
pactly supported function � is refinable if there is a finitely supported sequence ��� , such that
the function � satisfies the following equation:

�M/L0 3 A�� B�	��
 � � ��/ � 0 D� 3 +
The sequence ��� �����	��
 is called the refinement mask for �M/10 3 . A continuous refinable func-
tion � is interpolatory if

(2.1) �M/�� 3;A������ A
��� )�� A�� )� )��! #"%$&� � � +

A simple example of an interpolatory refineable function � is the hat function given in
the following example.
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EXAMPLE 2.1. Let

�M/10 3 A��� � � G 0?) 0  �� D � ) ��� )� D 0?) 0  �� � ) � � )� ) otherwise +
�M/10 3 is an interpolatory refinable function and its refinement mask is

� � A��� � �
	�� ) � A D � ) � )�
	 � ) � A�� )� ) otherwise +
Other examples are given in [3] in terms of their Fourier transforms �M/�� 3 by

(2.2) � /�� 3;A���� C?%  ��� /�� 	 � � 3 )��  OH)

and the symbols are

(2.3)  ��� /�� 3 � A������ � /�� 	 � 3 �! �#" F�$ %B
� C&% ')( 	 � D � G �

� * �,+.- F � /�� 	 � 30/1 )

where
(

is an even number. More details on interpolatory refinable functions can be found
in [14].

We will now recall the wavelet decomposition using interpolatory refinable functions.
First � defines a shift-invariant subspace 2 % of N � /@O 3 as2 % � A span �	�M/03 D � 3 � �� #" � +
The dilations of the space 2 % are 2 � � A � 56/ � � 3 3 � 5  42 % � +
Since � is refinable, 2 �65 2 �87 % , 9  " . For 5  ;: /LO 3 , the interpolation operator at the 9 th
dyadic level is <>=@?

5 � A B
� ��
 56/��

	 � � 3 � �8A � +
The order of the interpolation error is known for smooth functions [4]. The smoothness can
be described using Sobolev spaces BDC� /LO 3 [1]. One also requires that the refinable function� satisfies a Strang-Fix condition of order E which is given in terms of the Fourier transform� as �M/ �>3GFA�� )�H � � / ��I � 3;A � )�9 A�� ) � )
+
+!+ ),E D � ) �  "%$ � � � )
where H A 22KJ . Now, if 5 is a compactly supported function in the Sobolev space BLC 7 %� /LO 3
with Sobolev semi-norm M 5#M NC 7 % then the interpolation error 5 D

< = ?
5 satisfies

(2.4) OO 5 D
<P=@?

5QOOSR ����-T�,U M 5#M NC 7 % � $ � C +
The interpolation

<G=�?
5 interpolates 5 on the lattice / %F

?
3 " , i.e.,

/
< = ?

5 3 /�� 	 � � 3;A 56/�� 	 � � 3 ) �� #" +
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As 2 � $ % 5 2 � one can now introduce an algebraic complement B � $ % such that2 � A 2 � $ %�� B � $ % +
In particular, B � is a dilation of B % , where B % is the shift-invariant subspace of N � /LO 3generated by

� � A �M/ � 3 D � 3 +
It follows that 2 % A 2 % � B % [8, 16], with B % A span � � /,3 D � 3 � �! #" � ) andB � � A � 56/ � � 3 3 � 5  4B % � )
and one finds that < = ?

5 A
< = ?

��� 5 G
<
�
?
��� /@5 D

< = ?
��� 5 3 +

The spaces 2 � satisfy the decomposition

(2.5) 2 � A
��
78C&% � 7 ) � � A � 2 % ) 9 A�� )B � $ % ) 9
	 � +

Since �	� % A � � � is a basis for 2 % and � � �8A � � � is a basis for B � it follows that
� � has the basis��� �8A � � � given as

(2.6) � �8A �$A � � % A � ) 9 A�� )� � $ % A � ) 9	 � +
In general, let 5 be a compactly supported continuous function. Then, the sequence

< = ?
5

converges to 5 in �
3�� as 9 goes to infinity. In particular, as 9 goes to infinity (and 9�� A � ) 5
has the expansion

5 A �B� C&% B � ��
��
� A � � � A � )

where for each fixed 9 , the sequence � �
� A � � � ��
 is the sequence of wavelet coefficients related

to the space
� � .

The Besov space � C��� A � /@O 3 can be defined in many ways. One definition uses the wavelet
coefficients. Let �  : C /LO 3 satisfying the Strang-Fix condition of order E , with E�	 E � .
Then,

5 A �B� C&% B � ��
 �
�8A � � �8A �

is in � C��� A � /LO 3 if and only if

� � % A � � � G / �B� C?% / � � C�� � / B � ��
 M � � A � M � 3 % " � 3 � 3 % " ����� )

where E � � A E � G �
	 � D ��	 � . Furthermore, the Besov norm M 5#M !C � is equivalent to the above

number. We use in this paper the space � C 7 % " F% A % /LO 3 . Its norm is:�B� C&% B � ��
 � � C M � � A � M +
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It follows that the wavelet coefficients satisfyB
� ��
 M � �8A � M A�� / � $ � C 3 +

As we consider compactly supported wavelets and functions, only
� / � � 3 of the coeffi-

cients are nonzero. Thus, the average over all (nonzero) coefficients at level � is of order� / � $ � # C 7 %(' 3 +
If 5 is a compactly supported function in : C 7 % /@O 3 , then 5 is in both the Sobolev spaceB C 7 %� /@O 3 and the Besov space � C 7 % " F% A % /LO 3 (it is, in fact, in � C 7 %% A % /LO 3 ). Further facts of

Sobolev and Besov spaces can be found in [5] and [8].

2.2. Hyperbolic interpolatory wavelets. The hyperbolic wavelet basis [7] is a subset
of the rectangular wavelet basis [5]:

(2.7) ��� A � A 2� � C?% � �
	 A � 	 ) � % +
+!+
) � 2  " ) � R 9 % )!+
+!+
) 9 2 R 9 )
where � A / 9 % )
+!+
+
) 9 2 3 and � is as above. The hyperbolic interpolatory wavelet basis is
obtained from (2.7) by removing all elements for which 9 % G 3@3 3 G 9 2 	;9 leaving

(2.8)
� � A � A 2� � C?% � � 	 A � 	 ) � % +
+!+
) � 2  " ) � R 9 % )!+
+!+
) 9 2 R 9 )9 % G 3 3@3 G 9 2 R 9 )

where  2� CE% � �
	 A � 	 /10 % )
+!+
+�),0 2 3;A � � � A � � /10 % 3 3 3@3�� ��� A � � /L0 2 3 .
These basis functions span function spaces � � which alternatively are defined recursively

as

(2.9) � �87 % A � � � � �� � 7������ 7 ��� C �87 %
2� � C?%

� ��	�� )
where

� � are the spaces of univariate wavelets defined in (2.5) and

� % A � %�� +!+
+ � � % +
Note that these function spaces are constructed using dilations and shifts of a refinable func-
tion � . With

� � A � �� � 7������ 7 �
� C �87 %
2� � C?%

� � 	�� )
one has � �87 % A � � � � � . The basis functions � � � A � � /10 % 3 3 3@3�� ���
A � � /10 2 3 , with � 2� C?% 9 � A 9 G � ,form a Lagrange basis for the spaces

� � , with the grid points� � � A � ' � %� � � )!+
+
+!) � 2� �
� * � � % +
+
+!) � 2  " ) � R 9 % )!+
+
+
) 9 2�� 9 % G 3 3@3 G 9 2 A 9! )
and thus they are

�
at / � �F

?
� )
+!+
+
) � �F

? � 3 and � at all other points of
� � . Thus one can introduce

an interpolation operator on � � by"$# ? A "$# ? ��� �
"$% ? ��� /'& D "$# ? ��� 3 +
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This operator provides the interpolant on the grid
� A�� � � and the grid

�
as the grid known

as sparse grid in the literature [19, 17, 12]. Thus
" # ?

provides a direct way to compute the
sparse grid interpolant for which the combination formula can be used [11]. A bounded sub-
set of O 2 contains

� / 9 2 $ % � � 3 sparse grid points which is substantially less than the
� / � � 2 3

regular grid points in the same subset. It can be seen that for compactly supported interpola-
tory wavelets the number of wavelets contributing to the function values for arguments in a
bounded subset is

� / � 2 $ % � � 3 .
Next we estimate the interpolation error 5 D

< # ? 5 . For this we need the following lemma:

LEMMA 2.1. The cardinality of the set � A � / 9 % )
+!+
+
) 9 2 3 ��� R 9 � R 9 � 9 % G 3@3 3 G 9 2 A9 � is ��� A � �87 2 $ %2 $ % � .
Proof. Let �;/ 9 ),P 3 denote the cardinality of � . If 9 % A � the cardinality of R is �;/ 9 )�P D � 3 ,

since there are only P D � degrees of freedom. In the remaining cases where 9 %�� � , we have
that 9 � �

and the cardinality of � is � /.9 D � ),P 3 . Hence we have the recursion �;/ 9 ),P 3 A
�;/ 9 ),P D � 3 G �;/ 9 D � ),P 3 . We use the fact that �;/ � ) � 3 A �

to start an induction and the
induction step over 9 and P to see that

� /.9 ),P 3;A �;/ 9 )�P D � 3 G � /.9 D � )�P 3
A
' 9 G P D �

P D � * G
' 9 G P D �

P D � *
A
' 9 G P D �

P D � * )
based on the standard recursion formula for binomial coefficients.

We are now ready to state the following theorem:

THEOREM 2.2. Let � � be the hyperbolic interpolatory wavelet space as defined in equa-
tion (2.9). Suppose that the underlying refinable function � satisfies the Strang-Fix condition
of order E . Let

< # ?
be the interpolation operator from : /@O 2 3 onto � � . Then for an arbitrary

compactly supported function 5 in : C��(/@O 2 3 with E � � E G P 	 � ,
OO 5 D

< # ? 5QOOGR ����-T�,U M 5#M !C 7 2 " F ' 9 G P D �
P D � * � $ � C )

where M 5#M !C 7 2 " F is the Besov norm of 5 in � C 7 2 " F% A % . The constant is independent of 5 and 9 .
Proof. We first discuss the case that �� L: C 7 % /LO 2 3 is a compactly supported tensor

product function, i.e.,

� A
2� � C?% � � )

so that we have � /
	 3 A � % /10 % 3 3@3@3�� 2 /L0 2 3 .
Let � � have the 1D expansion

� � A �B�
	 C&% B� 	 ��
 � � 	 A � 	 � � 	 A � 	 ) �
A � )
+
+!+�),P+
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Then, subtracting the wavelet expansion for

< # ? � from the wavelet expansion for � , we get

� D
< # ? � A B� � 7������ 7 �����)�% � � � ����� ���

B� ��
 �
2� � C?%
� � 	 A � 	 � � 	 A � 	

A B� � 7������ 7 �����)�% � � � ����� ���
2� � C?%

B� ��
 � � �
	KA � 	 � ��	�A � 	 +
Since OOOOOO

2� � C?%
B� ��
 � � � 	 A � 	 � � 	 A � 	 OOOOOO R �@� -T�,U M � M NC ��$ # � � 7������ 7 ��� ' C )

we get

OO � D < # ? � OO R B� � 7������ 7 �
���)�% � � � ����� ���
OOOOOO
2� � CE%

B� ��
 � � ��	 A � 	 � �
	 A � 	 OOOOOOR ����-T�,U M �&M NC B� � 7������ 7 � � �)�% � � � ����� ��� � $ # � � 7������ 7 �
� ' C
A ����-T�,U M �&M NC �B

78C �87 % '�� G P D �
P D � * ��$ 7 C +

Here, we have used Lemma 2.1. Although the constant ‘ �@� -T�,U ’ may vary throughout the
proof, we use the generic name ‘ �@� -T�,U ’ for items independent of 9 . Rewriting the above, we
get

OO � D < # ? � OO R �@� -T�,U M � M NC ' 9 G P D �
P D � * � $ � C �!��B

78C �87 % '	� G P D �
P D � * 
 ' 9 G P D �

P D � * � $ #.7 $ � ' C /1 +

We now let � A � D 9 and observe that' � G 9 G P D �
P D � * 
 ' 9 G P D �

P D � * A / � G 9 G P D � 3 / � G 9 G P D� 3 3@3@3!/ � G 9 G � 3
/ 9 G P D � 3 / 9 G P D � 3 3@3 3!/ 9 G � 3

A
2 $ %�
� C?%

� G 9 G �9 G �
A
2 $ %�
� C?%

' �9 G � G � * +

We use this to simplify the series�B� C?% ' � G 9 G P D �
P D � * 
 ' 9 G P D �

P D � * ��$ � C
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to �B� CE%
2 $ %�
� C?%

' �9 G � G � * ��$ � C R �B� C?% / � G � 3 2 $ % ��$ � C )
which is convergent by the quotient rule:

� +����� � ' � G �� G � * 2 $ % � $ C � �

for E 	 � . This is a constant independent of 9 so we have the bound

(2.10) OO � D < # ? � OO R ��� - �0U M � M NC ' 9 G P D �
P D � * ��$ � C R � / 9 2 $ % 3 ��$ � C +

Thus we get convergence in 9 for fixed P . While the bound grows exponentially in P , however,
as 9 grows very slowly with the grid size, this dependence is close to constant.

For the general case, we first choose an interpolatory refinable function �  : C��,/LO 3 , withE � 	 E G P 	 � , that satisfies the Strang-fix condition E � . Such a function � can be constructed
by choosing

(
in (2.3) sufficiently large (see, e.g., [2] and [14]). Let � be the tensor product

of � , i.e.,

� / 	 3 � A �M/10 % 3 3 3@3 ��/L0 2 3 +
Thus, �  �: C��(/@O 2 3 is a P -variable interpolatory refinable function. Then we can define the
P -dimensional tensor product interpolatory wavelets as (see, e.g., [8])

�	� � A � / � 3 D�
E3 ) 
  � � ) � � 2 $&�� � A ��� % )
where � � ) � � 2 is the set of all P dimensional vectors with entries either � or

�
.

For an arbitrary compactly supported function 5  : C��,/LO 2 3 , with E � 	 E G P 	 � , expand-
ing 5 in terms of this basis, one obtains that

56/ 	 3 A B� ��
 � � % A � � /
	 D � 3$G �B
78C&% B� ��
 � B� ����� P � 7 A � �	� / � 7 	 D � 3 +

Note that this is a different decomposition than what is used elsewhere in this paper because
there are no mixed scales. This is done in order to use the bound obtained for the tensor
product function (2.10) for each scale in the general proof. Therefore,OO 5 D

< # ? 5QOO R B� ��
 � M � % A � M�OO � /03 D � 3ED
< # ? � /03 D � 3 OO

G �B
7.C&% B� ��
 � B� ��� � �� P � 7 A � �� OO � � / � 7 3 D � 36D

< # ? � � / � 7 3 D � 3 OO +
Since � and

��� / � 7 3 3 are tensor product functions, we use the bound given in (2.10) to obtainOO � /03 D � 36D
< # ? � /03 D � 3 OO R �@� -T�,U ' 9 G P D �

P D � * M � M NC ��$ � C )
andOO � � / � 7 3 D � 36D < # ? � � / � 7 3 D � 3 OO R ����-T�0U ' 9 G P D �

P D � * �� � � / � 7 3 3 �� NC � $ � C ) �  #" ) 
  � % +
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Since 5 is in : C��,/LO 2 3 , it is in the Besov space � C 7 2 " F% A % . Furthermore, its Besov normM 5#M !C 7 2 " F is equivalent to

(2.11)
B� ��
 � M � % A � M G �! �B

7.C&% � 7 C �! B� ��
 � B� ����� M P � 7 A � M /1 /1 )

(see [8], Theorem 2.7), and, since
�� �	� / � 7 	 3 �� NC A � 7 C M �	� /
	 3 M NC )

we haveOO 5 D
< # ? 5 OO R �@� -T�,U ' 9 G P D �

P D � * ��$ � C �! B� ��
 � M � % A � M G �B
7.C&% B� ��
 � B� ��� � �� P � 7 A � �� � 7 C /1R �@� -T�,U M 5#M !C 7 2 " F ' 9 G P D �

P D � * ��$ � C +
The last inequality follows from (2.11).

REMARK 2.1. The accuracy of the compressed (orthogonal or biorthogonal) wavelet
expansion has been discussed in [7, 10, 15], where it was called the hyperbolic wavelet basis.
However, the proof there, which depends on the vanishing moments of the wavelet functions,
cannot be applied to the interpolatory wavelet expansion used here, since they do not have
the required vanishing moments.

The choice of interpolatory wavelets is motivated by their practical advantages. In par-
ticular, the wavelet coefficients of hyperbolic interpolatory wavelets are closely related to the
function values on a sparse grid which can be retrieved with little extra computation. These
function values can then be used to determine many local properties of the functions like
slope, curvature, and interactions.

REMARK 2.2. The Besov spaces provide some information about the size of the wavelet
coefficients P

�
7 A � . In fact, in the case of 5  � C 7 2 " F% A % , one has

B� ��
 � B� ��� � �� P
��8A � �� A�� / � $ � C 3 +

As � % contains
� / � 2 3 elements and for compactly supported wavelets and functions� / � 2 � 3 of the coefficients are non-zero the average of all coefficients at level 9 is of order� / � $ � # C 7 2 ' $ 2 3 +

3. Implementation and Application.

3.1. The smoothing problem in � � . The hyperbolic interpolatory wavelets are now
used to solve the following smoothing problem. Given the data set: / 	 #.78' )(" #.78' 3 ) � A� )!+
+!+�) � ) 	 #.78'  O 2 )E" #87.'  O�) we wish to minimise the functional

< = /@5 3HA -B
78C?%

/@56/ 	 #.78' 3ED " #.78' 3(FHG I ��� � M K�56/
	 3 M F P 	M)
where � is the number of data points and 5 is limited to � � . This leads to the following matrix
problem for the vector of wavelet coefficients � :

< = /�� 3;A ���	� D�
 � F G I � #� � )
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where � � ��� A � A � � � K � �8A � K � �8A � P 	M)� � � 7 A � A � � A � / 	 #.7.' 3 ) � A � )!+
+
+
) � +
This problem has the normal equations:

(3.1)
� � # � G I ��� � A � # 
 +

The computations of the matrices use the wavelet basis functions � � A � . It turns out that the
computations could also be done using products of shifted and translated refinable functions� . For this one first observes that

� � 5 2 � and thus
2� � C?%

� � 	S5 2� � CE% 2 � 	 +
The basis of the right-hand side are just products of shifts and fixed dilations of the refinable
function � . After computing the corresponding matrices to N and � in this case the fast
wavelet transform is used to determine the components relating to the wavelet spaces. This
does not require the determination of the matrices for the “full” spaces  2� C?% 2 ��	 but only
for a selection of much smaller spaces. In a sense this approach is akin to the combination
technique of sparse grids which also requires the solution of problems on smaller but regular
spaces. In contrast to the combination method the method proposed here, however, is the ex-
act solution in the wavelet space and not only an approximation. Moreover, the determination
of the matrices in the wavelet space can be computed very efficiently using the fast wavelet
transform.

3.2. Example: Predictive modelling of forest cover type. In this section we demon-
strate how the method developed in the previous sections can be used in data mining for
multidimensional predictive modelling. We will take a (Bayesian) classification problem as
our example. The data description and the problem statement are available at the web page
http://kdd.ics.uci.edu/databases/covertype/covertype.html.

The aim is to find a model for the forest cover type as a function of the following
� �

cartographic parameters:

Variable Description

ELEVATION Altitude above sea level
ASPECT Azimuth
SLOPE Inclination
HORIZ HYDRO Horizontal distance to water
VERTI HYDRO Vertical distance to water
HORIZ ROAD Horizontal distance to roadways
HILL SHADE 9 Hill shade at 9am
HILL SHADE 12 Hill shade at noon
HILL SHADE 15 Hill shade at 3pm
HORIZ FIRE Horizontal distance to fire points

All values are averaged over 30x30 meter cells and are observed on a regular grid with
30 meter spacing in both directions.

The response variable takes one of seven values (1-7) corresponding to the different
possible types of forest cover. They are Spruce fir, Lodgepole pine, Ponderosa pine, Cotton-
wood/Willow, Aspen, Douglas fir, and Krummholz, respectively. However, for this study we

http://kdd.ics.uci.edu/databases/covertype/covertype.html
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will use the data to train a predictive model predicting only the presence or absence of one
type of forest cover at a time. In particular, we will determine predictors for the existence of
Ponderosa pine. Predictors for the other types can be obtained in similar ways. The response
variable is thus

" A
� � ) cover = Ponderosa pine )� ) otherwise + ) � A � )
+!+
+
)�� +

The predictor is the vector 	 of cartographic measurements.

Each model found using the smoothing methodology of Section 3.1 is a continuous func-
tion 5 . The classifier is obtained by thresholding this function where the class is predicted to
be Ponderosa pine if 56/
	 3 	 � + � and is not Ponderosa pine otherwise. On any test set the
performance of the function 5 is estimated by the misclassification rate. This is the number
of times the classifier predicts Ponderosa pine when in fact it is something else for the test
set plus the number of times that the classifier predicts something else but the actual data is
indeed Ponderosa pine.

The smoothing method requires the choice of two parameters, the smoothing parameter I
and the maximal level 9 . If I is chosen too small and 9 too large then one would get overfitting
of large misclassification rates. In order to determine these parameters the data is randomly
separated into three distinct subsets of approximately equal size. The first part, the training
set is used to compute functions for a variety of different parameters I and 9 . The second
part, the test set is used to estimate the misclassification rate for these functions which have
been determined from the training set. The parameters are selected to make this error estimate
minimal. Finally, the third part of the data is used to estimate the misclassification rate of the
model with these “optimal” parameters. For an in-depth discussion of the properties of this
method, see [13].

The above problem is ten-dimensional at a first glance. However, some variables are
likely to be more important than others, so we have conducted an initial 1D study predicting
" as a function of each of the independent variables separately. The most important variables
are then selected for predictions of high dimension.

Figure 3.1 shows approximating functions 5 which depend on one variable 0 7 only. The
y-axis corresponds to the function values 56/L0 7 3 and the x-axis to the values of 0 7 . The name
of the particular variable 0 7 together with the overall classification rate is provided as label
to each plot. It can be seen that “elevation” is the most important predictor variable with a
classification rate of � + � � followed by “distance to roads” with a rate of � +���� and “distance to
fire points” with a rate of � +���� . The rates and the best values of I and 9 are listed in Table 3.1

The important question at this point is how much the maximal rate of the 1D predictions
can be improved by simultaneously taking more variables into account. This depends on the
problem at hand and can be verified by progressively increasing the dimensionality includ-
ing variables according to their importance as assessed in the 1D study. Table 3.2 shows the
classification rates obtained from multivariate models. In this case 9 was fixed to be � butI was found using the test set as described above. It is seen that the best classification rate
was increased from � + � � in the 1D case to � + �	� in the six dimensional case. The third column
provides a reference prediction using a generic surface where possible. The generic surface is
obtained by using the spaces 2 � � 2 � instead of the hyperbolic interpolatory wavelet spaces.
It is seen that the predictive power of the compressed surface is almost as good as that of a
full surface. In this particular example, the gain in classification rate from increased dimen-
sionality is modest. Other examples, where a multivariate model has much more predictive
power, the advantage of using the compressed system will be greater.
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ELEVATION: 0.80 ASPECT: 0.53 SLOPE: 0.53

HORIZ_HYDRO: 0.54 VERTI_HYDRO: 0.54 HORIZ_ROAD: 0.59

HILL_SHADE_9: 0.55 HILL_SHADE_12: 0.52 HILL_SHADE_15: 0.53

HORIZ_FIRE: 0.55

FIG. 3.1. One dimensional predictions of Ponderosa pine. y-axis: predictions �>����� � , x-axis: predictor ���
used, label: name of predictor ��� and classification rate.

Variable I 9 Rate
ELEVATION 100 1 0.80

ASPECT 0.1 4 0.53
SLOPE 10 2 0.53

HORIZ HYDRO 0.01 2 0.54
VERTI HYDRO 0.1 2 0.54
HORIZ ROAD 1 5 0.59

HILL SHADE 9 100 2 0.55
HILL SHADE 12 10000 0 0.52
HILL SHADE 15 10 2 0.52

HORIZ FIRE 0.1 1 0.55
TABLE 3.1

Results of the 1D predictions corresponding to Figure 3.1. The chosen value of � and � are given together with
the classification rate for each of the ten variables.

Compressed system Generic system
Dimensions Rate # terms Rate # terms

2 0.8216 37 0.8260 81
3 0.8359 123 0.8483 729
4 0.8487 368 0.8631 6561
5 0.8587 1032 N/A 59049
6 0.8697 2768 N/A 531441

TABLE 3.2
The best multivariate predictions obtained from the compressed system and the generic system where possible.

It is seen that the compressed system predicts almost as well as the generic system but it requires much less storage.
The CPU time required to compute the generic system increased rapidly with increased dimensionality and it was
not possible to compute the generic system for dimensions higher than 4 because of excessive storage requirements.
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4. Conclusion. We have introduced hyperbolic interpolatory wavelets and demon-
strated how they can be used for data mining applications, in particular predictive modelling
based on smoothing. Compared to related approaches using (bi-)orthogonal wavelets the ap-
proach suggested here has advantages for data mining as function values on the grid points
are readily accessible and could be used to determine properties of the functions like deriva-
tives, and, possibly more importantly, have an immediate meaning for the application which
is not the case for the wavelet coefficients of (bi-)orthogonal wavelets. The method performs
well for up to around 10 dimensions. We are now generalising this approach for higher di-
mensions. Further information and related software can be found at our web page
http://datamining.anu.edu.au.
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