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ON THE ESTIMATION OF THE
�

-NUMERICAL RANGE OF MONIC MATRIX
POLYNOMIALS �

PANAYIOTIS J. PSARRAKOS �
Abstract. For a given ����� �
	����	 the � -numerical range of an ����� matrix polynomial �������������� "!#  %$'& �  %$(& !*)+)�)+! # & ��! #-, is defined by .�/
���0�1�324�5�7698;:=<>���?�@��AB�C�
	=AD	E:F�G6IHJ	=A�<4AF�K:=<4:L��;	
:M<>AN�9��O . In this paper, an inclusion-exclusion methodology for the estimation of .P/
���0� is proposed. Our

approach is based on i) the discretization of a region Q that contains . / �?�0� , and ii) the construction of an open
circular disk, which does not intersect . / ���0� , centered at every grid point RP��QPST. / ���0� . For the cases �U�V�
and �XWY��WZ�;	 an important difference arises in one of the steps of the algorithm. Thus, these two cases are
discussed separately.

Key words. matrix polynomial, eigenvalue, � -numerical range, boundary, inner � -numerical radius, Davis-
Wielandt shell.
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1. Introduction and definitions. Let []\ be the algebra of all ^B_%^ complex matrices,
and suppose that

`Xacb'dfe]ghb(i9jlk i7mon b(iBmon0jZpqpqp=j�k n b�j�kBr(1.1)

is an ^Y_3^ monic matrix polynomial, where
kFsKt [ \ avuweyx{zq|�zq}~}q}�z+����|
d

and
b

is
a complex variable. One encounters matrix polynomials for instance when studying systems
of ordinary differential equations or difference equations, with constant coefficients. The
suggested references are [5, 11, 19].

For a given � t�� x{z~|���z the � -numerical range of
`Xa�b(d

in (1.1) is defined by [14, 15]

�V�@aE`�dXe��MbCt 6���� � `Xacb'd��Ke�x{zJ�-z � t 6 \ zJ� � �Ke � � � e�|�z � � �Ke �h� }(1.2)

Evidently,
� � ac`�d

is always closed and contains the spectrum of
`Xacb'd

, that is, the set of all
eigenvalues of

`Xa�b(d
, � aE`�d5e��=blt 6�� det

`Xacb'd5e�x � . For � e�|�z
we have the classical

numerical range of
`Xacb'd

[10, 12], namely,

��ac`�dN��� n aE`�dXe��MbCt 6�� � � `Xacb'd��Ke�x{zJ��t 6 \ z{� � �Ce�| � }

If � t�acx{z~|�� and
`Xacb'd�e�gDb�� � k for some

k�t [ \ z then
�"��aE`�d

coincides with the
� -numerical range of

k
, � ��ack7d�e�� �{� kF� � �Tz � t 6 \ z{� � �9e �1��� e]|@z �{� ��e �h� . For

� e�|�z
the numerical range of

k
is � aEk7d�� � n aEk�d�e]�~� � kF� � �Zt 6 \ zJ� � ��e]| � [4].

Moreover, the (outer) � -numerical radius and the inner � -numerical radius of
k

are defined
by

  ��ack7dNe�¡X¢�£(��¤ ¥¦¤ � ¥"t � �@aEk7d � and §  ��aEk�dXe�¡f¨v©o��¤ ¥¦¤ � ¥VtCª � �@aEk�d � z
respectively. Note also that   ��ack7dL«¬�k�¬�® for every � t�� x{zq|q� [8], where

¬-pq¬q®
denotes the

norm induced by the standard inner product.
During the last decade, the numerical range

��aE`�d
has attracted attention, and several

results have been obtained (see, e.g., [2, 6, 7, 10, 12, 13, 16, 18]). These results are helpful
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in investigating and understanding matrix polynomials, and some of them have been gen-
eralized to the case of the � -numerical range [3, 14, 15]. Furthermore, applications of the
numerical range of matrix polynomials in spectral analysis, factorization and stability of ma-
trix polynomials can be found in [6, 13, 18], respectively. It is easy to see that if � e x{z then�"��aE`�dI� 6 . Hence, in the remainder of this note, we assume that

x � � « | . As a conse-
quence, since the leading coefficient of

`Xa�b(d
in (1.1) is the identity matrix, the � -numerical

range
�"��aE`�d

in (1.2) is compact and has no more than
�

connected components [10, 14].
Algorithms for plotting the boundary of the numerical range of the matrix polynomialsk7b ® i����oi�� j	�Pb i
���oi�� j�5b i��

and
k7b i
���oi�� jCa��3j

i
�5d i�� z

where the matrices
k�z�� z��

are Hermitian, can be found in [7, 16, 17]. Moreover, the point equation of the boundary of
the numerical range of a general matrix polynomial is studied in [2]. The numerical approx-
imation of the � -numerical range of the monic matrix polynomial

`Xacb'd
in (1.1) is still an

open and challenging problem. The “brute force” approach would be to plot the roots of the
polynomial �(� `Xa�b(d�� for a large number of randomly chosen unit vectors

�Tz � t 6 \ sat-
isfying �(� � e � . But that would be too costly, and it would probably not accurately depict
the boundary of

� � aE`�d
. In this paper, a methodology for the estimation of the � -numerical

range
� � aE`�d

is proposed. This method is the first method for drawing
� � aE`�d

besides the
application of the definition, and can also be used for the approximation of the boundaryª � � aE`�d

. In the next section, we describe the general inclusion-exclusion algorithm, which
is based on the boundedness of

� ��ac`�d
and a result on open disks that do not intersect

����ac`�d
[12, 14], and requires the computation of the inner � -numerical radius of the (fixed) matrix`Xa ¥Td

for several
¥lt 6�� �"�@aE`�d . In Sections 4 and 5, algorithms for the calculation of the

inner � -numerical radius of a square complex matrix for the cases � e| and
x � � � |@z

re-
spectively, are given. Furthermore, numerical examples are presented to illustrate our results.
For all the experiments, the computations were performed in MATLAB 4.2 on a PC Celeron
600.

2. The general algorithm. Consider an ^ _ ^ matrix polynomial
`Xa�b(dKe�ghb i jk i7mon b iBmon j�pqp~p{jk n b3j�k r as in (1.1) and a real � t�aEx1zq|��

. Let
¥

be a complex
number, which does not belong to the � -numerical range of

`Xa�b(d
, i.e.,

¥
lies in the open

set 6�� � � ac`�d . Then, we can construct an open circular disk � aE¥Uz����Jd with center at
¥

and
radius

��� � |
such that � a ¥Uz����Jd�� � � ac`�dPe��

. The closure of � a ¥Uz����{d is denoted by
� aE¥Uz����Dd .

THEOREM 2.1. Suppose
`Xa�b(d%eZgDb i jKk iBmon b iBmon jVp~pqp�jKk n bLjKk r and � t acx{z~|���z

and let
¥"t 6�� � � aE`�d . Then the open disk � a ¥Uz����{d with radius

� � e §  � aE`XaE¥Td d
§  �@aE`Xa ¥Td+dTj�¡f¢�£hs�� n �"!"!"! � i ¬ ns # `%$ s�& aE¥Tdq¬�®

does not intersect the � -numerical range
� � aE`�d

.
Proof. Consider the matrix polynomial

`'� acb'dNe�`Xa�bPj�¥TdNe�ghb i j�� iBmon b i7m n jZpqp~p
j�� n bPj�� r

and denote
� i e g . It is well-known that

� ��ac` � dXe]�"��ac`�d���¥
[10, 14]. Thus, the origin

does not belong to
�"�@aE` � d

, or equivalently,
x�(t � �@a��Br=dGa�� � �@aE`Xa ¥Td+d d . By [14, Theorem

1.4 ] (see also [12, Theorem 3.1]), for every ) t�� � ac`*�{d�z
we have that

§  ��a��BrMd
§  � a�� r dTj�¡X¢�£ s�� n �"!"!"! � i   � a�� s d

« ¤ ) ¤ }
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Since   � a�� s dI« ¬ � s ¬ ® (
u�e|�z � zq}q}~};z �

), it follows that

§  � a�� r d
§  �@a �7r
dTj�¡X¢M£hs�� n �"!"!"! � i ¬ �Fs�¬�®

« ¤ ) ¤ }

Hence, � acx{z����Dd ��� � aE`'�{d�e �Jz
or equivalently, � aE¥Uz�� �Dd*�C� � aE`�dLe �

. Since the coeffi-
cients of

`'� acb'd¦e�`Xacb�j�¥Td
are given by

�Fs3e |
u�� ` $ s�& a ¥Td���u�eZx1zq|�zq}q}~};z �"z

the proof is complete.
The � -numerical range

� ��ac`�d
is bounded, and thus, we can always find a bounded

region � in the complex plane that contains
� �@aE`�d

. For example, it is known that [14,
Theorem 1.4]

�V�@aE`�d�� �
	 xPzT|%j ¡f¢�£s�� r �"!"!"!"� i7m n

  � ack s d
� 
 � �

	 xfzo|%j ¡f¢�£s��or �"!"!"! � i7m n
¬�k s ¬ ®
� 
 }(2.1)

Then we can approximate
� ��aE`�d

by plotting its complement with respect to � .

Algorithm 1 (The general inclusion-exclusion procedure)
Step I Obtain an open bounded region ���96 such that

����aE`�d �� .
Step II Construct a grid ��� of � .
Step III For every grid point

¥"t ��� z repeat the following:
(a) check if

¥ (t��"�@aE`�d;z
or equivalently, if

x (t � ��ac`Xa ¥Td d ,
(b) if

x (t � � ac`Xa ¥Td d�z then compute the inner � -numerical radius §  � aE`XaE¥Td d and
the matrices

� s e |
u�� ` $ s�& aE¥Td���uPe�x{zq|�zq}~}q}�z+�Vz

(c) construct the open circular disk � aE¥Uz�� � d ��6 � �V�@aE`�d with radius

� � e §  ��a �7rMd
§  � a � r dTj�¡X¢M£ s�� n �"!"!"!"� i ¬ � s ¬ ®

}

Step IV The set � � ��������
r������� $ � $ � & &

� aE¥Uz����{d

is an approximation of
� � aE`�d

and always contains
� � ac`�d

.

An important feature of the above methodology is that it does not depend strongly on
the degree

�
of
`Xacb'd

, which appears only in the computation of the matrices
� s

(
u�e

x{z~|@zq}~}q};z+�
). Note also that the most expensive part of Algorithm 1 is the calculation of the

inner � -numerical radius §  ��aE`XaE¥Td d in Step III (b). This step will be further discussed in
Sections 4 and 5.

The two inclusion regions given by (2.1) are not always satisfactory, since they are
centered at the origin. By a simple MATLAB code, one can plot the roots of a few poly-
nomials of the form �(� `Xa�b(d��Tz where

�Tz � t 6 \ are unit vectors satisfying �(� ��e � .
In this way, a first approach of an open rectangle � e a"!$#&% 'Jz(!�#&)(*�d _ a i + #&% 'Jz

i + #&),*@d



ETNA
Kent State University 
etna@mcs.kent.edu

4 On the estimation of the � -numerical range of monic matrix polynomials

(
! #&% ' z(! #&)(* z + #&% ' z + #&)(* t��

), which contains
� � aE`�d

, is obtained. After choosing � z we
can construct either a constant or a variable grid. In our experiments, we use two grids, where
we move rightwards on each grid line and upwards on each grid column. The first grid, de-
noted by ��� � n a��@d;z is formed by a partition of the intervals

a !�#&% 'Jz(!�#&)(*@d
and

a + #&% '{z + #&),*@d
with constant length

�Jz
where all grid points within the disks generated by Step III (c) are

excluded. The second one, denoted by �$� � ®�a��@d;z is formed by a partition of the intervala"!�#&% 'Jz(!�#&)(*�d
with constant length

�
and a partition of the interval

a + #&% '{z + #&),*@d
with vari-

able length
¡f¢�£ ���Jz�� � � z where

� �
is the radius of each disk generated by Step III (c).

3. Approximating the boundary. Let
`Xacb'd

be an ^C_P^ matrix polynomial as in (1.1)
and let � t�aEx{z~|�� . For a

¥ t 6 � �"��ac`�d;z recall the open disk � aE¥Uz�� � d in Theorem 2.1 and
consider a positive real � ��� ¡X¢M£�s�� n �"!"!"!"� i ¬ ns # ` $ s�& aE¥Tdq¬q®

. Then from the relation

§  �@aE`Xa ¥Td+d
§  �@aE`XaE¥Td d-j � � « ��� « §  ��ac`Xa ¥Td+d

§  ��ac`Xa ¥Td d-j |
z

it follows that

� � � §  ��ac`Xa ¥Td d�«
� � � �
|I� ��� z(3.1)

and it is clear that the radius
� �

is small if and only if the inner � -numerical radius of
`Xa ¥Td

is sufficiently small.
Denote now by 	 ac`Lz ¥Td the distance between

¥
and the compact set

����aE`�d
. By Theo-

rem 2.1, this distance is greater than or equal to
� �

. Moreover, we have the following result.
THEOREM 3.1. For an ^"_K^ matrix polynomial

`Xacb'd¦e�gDb i jYk iBmon b i7m n j�pqp~p
jk n b�j kFr and � t�acx{zq|q��z
consider

¥�t 6 � �"�@aE`�d and the disk � aE¥Uz�� � d defined in
Theorem 2.1. Suppose that for two unit vectors

�'r�z � r t 6 \ such that �1�r �1r�e � and¤ �{�r `Xa ¥Td��1rJ¤@e §  ��ac`Xa ¥Td+d , we have �1�r ` $ n & a ¥Td��1r�
e�x
. Then for sufficiently small

� �
,

	 aE`Lz ¥TdK«
� � � � �

a�|I� � �{do¤ � �r ` $ n & aE¥Td�� r ¤ }

Proof. Consider the two unit vectors
�'r�z � r5t 6 \ satisfying

� �r �1rVe � z ¤ � �r `XaE¥Td��(rD¤@e §  �@aE`XaE¥Td d;z and � �r ` $ n & a ¥Td��1r�
eZx{}
Then there is a real �� x such that for any

bCt � a ¥Uz � d;z
� �r `Xacb'd��(r�e � �r �
`XaE¥TdojZa�bX�"¥Td�` $ n & a ¥Td-jZa�bX�"¥Td��facbTz ¥Td � �1re � �r `Xa ¥Td��1r�j�acb �V¥Td�� � �r ` $ n & a ¥Td��(rLj � �r �facbTz ¥Td��1r���z(3.2)

where
¬��facbTz ¥Tdq¬Ie��Ja�|=d

as
¤ b0�5¥¦¤�� x

. Since �1�r ` $ n & a ¥Td��1r�
e�x
, � can be chosen so small

that
¤ � �r ` $ n & a ¥Td��1rJ¤ � � ¤ � �r �facbTz ¥Td��1r{¤ for every

b"t � a ¥Uz � d . Furthermore, for sufficiently
small

� �
, by (3.1), we can assume that

§  �@aE`Xa ¥Td+dK« � ¤ � �r ` $ n & a ¥Td��1r�j � �r �facbTz ¥Td��1r{¤ }
Then, since (3.2) holds for every

b�t � a ¥Uz � d;z there exists a
b(r t � a ¥Uz � d such that

�1�r `Xa�b{rMd��(r�e x1z i.e.,
b1r�t��"�@ac`�d

. Thus,

	 ac`Lz ¥TdC« ¤ b1rF�"¥¦¤0e §  �@aE`XaE¥Td d¤ � �r ` $ n & a ¥Td�� r j � �r �facb r z+¥Td�� r ¤
« � §  ��ac`Xa ¥Td d¤ � �r ` $ n & aE¥Td�� r ¤ z
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and the proof is completed by (3.1).
Notice that for any

¥ (tV� � aE`�d�z
the origin does not belong to the � -numerical range of

the matrix
`Xa ¥Td

and there are infinitely many pairs of unit vectors
� r�z � r3t 6 \ such that

�1�r �(r7e � and
¤ �1�r `XaE¥Td��1rJ¤@e §  aE`Xa ¥Td+d . If one of these pairs also satisfies �(�r ` $ n & a ¥Td��1r 
e x{z

then Theorem 3.1 and the inequality 	 aE`Lz ¥Td � � �
imply that the radius

� �
is small if

and only if the point
¥

is sufficiently close to the boundary of
���@aE`�d

. Recall also that the
function

¡X¢M£Ds�� n �"!"!"! � i ¬ ns # ` $ s�& a�b(d~¬�®
is bounded. Hence, if we choose a sufficiently small�  x{z then we can approximate the boundary

ª ���MaE`�d
by using Algorithm 1 and plotting

the disks � a ¥Uz�� � d � � � �"��aE`�d with radius
� � � � (see Examples 4.2 and 5.1 below).

4. The case � e |
. Let

`Xa�b(dLe�ghb i jYk i7m n b i7mon j�pqp~p=jlk n bPjYk r be an ^ _K^
monic matrix polynomial and let � e�|

. It is clear that for the estimation of the numerical
range

��ac`�dPa���� n aE`�d+d via the algorithm in Section 2, a method for the computation of
the inner numerical radius of an ^ _K^ complex matrix is needed. By [1, Theorem 2.1] (see
also [4, Chapter 1.5]), the inner numerical radius of a matrix

k�t [ \ is given by

§  aEk�dN� §  n aEk�dNe
����� ¡f¨v©� ��� r � ®��	� b #&),* 
�� i � kYj � m i � k ��  ����� z

where
b #&),* a�p d

denotes the maximum eigenvalue of a Hermitian matrix. As a consequence,
the following procedure produces §  aEk7d and classifies the origin as belonging to � aEk�d*�
� n aEk�d or not.

Algorithm 2
Step I Construct a grid ���

e u��� � uPe�x{zq|�zq}~}q};z � ���Y|��
of the interval

� x1z � � �
for some positive integer

�
.

Step II For every choice of

�
z

compute the largest eigenvalue
b�#&),*{a���a � d d

of the Hermi-
tian matrix ��a � dNe |� � � i � k9j � m i � k � � }

Step III Find the minimum of
b #&),*{a���a � d d

and the corresponding angle

�
r
. The absolute

value of this minimum is an approximation of the inner numerical radius §  aEk�d .
Moreover, the origin does not belong to the numerical range � aEk�d if and only if the
eigenvalue

b #&),*{a���a � r=d d
is negative.

The above algorithm can be used for Step III (a),(b) of Algorithm 1. As a consequence,
we have a complete methodology for the approximation of the numerical range

��ac`�d
, which

is illustrated in the following examples.
EXAMPLE 4.1. For the matrix polynomial

` n a�b(dNe]ghb��%j�� �5| �5|
x � ��� b ® j�� x i| �5| � b�j�� |
x �

i ! " � z
the roots of a few thousand (randomly chosen) polynomials of the form

� � ` n acb'd�� aE��t
6
® z{� � �Ce |=d are sketched in the left part of Figure 4.1. Observe that we do not have a clear

picture of
��aE` n d;z and that three eigenvalues of

` n acb'd (marked with ‘+’) appear to lie out of��aE` n d . Moreover, it seems that
��ac` n d lies in the open rectangle � e a �$#{z�#hd _ a � i

� }%�Jz
i
#�d

.
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FIG. 4.1. A numerical range with three connected components.

For the grid ��� � n acx{} x ��d;z by Algorithms 1 and 2, an approximation of the numerical range��aE` n d is drawn in the right part of the figure. The number of disks is 1076, and now we
can see that

��ac` n d has three connected components and contains the spectrum � aE` n d in its
interior.
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FIG. 4.2. A connected numerical range.

EXAMPLE 4.2. For the matrix polynomial

`-®�acb'dNe�gDb � j � | �� �5| � b ® j � x i| �5| � bPj � � �$#
| x � z

the roots of a few thousand (randomly chosen) polynomials of the form
� � ` ® a�b(d��Za �yt

6
® z1� � �9e |
d

are sketched in the left part of Figure 4.2. We have a clear picture only for
the left part of

��ac` ® d
and an eigenvalue of

` ® acb'd
(marked with ‘+’) appears to lie out of��aE`�®=d

. Using our methodology and choosing the grid �$� � n acx{} x ��d of the inclusion domain� e a �$#{z #�d _ a�� i
� z

i
� }%�@d;z

an estimation of the numerical range
��ac` ®=d

is drawn in the
right part of the figure and gives a better visualization of

��aE`U®=d
. The total number of disks is

3812. With respect to the same grid, in Figure 4.3, we plot exactly the open disks � aE¥Uz�� � d ���� ��aE`�®
d
with radius

� � � � for � e x1} x ! (left part) and � e x1} x��
(right part). In this

way, we approach the boundary of
��aE`U®
d

, confirming Theorem 3.1 and the discussion in the
previous section.
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FIG. 4.3. Approximating the boundary of .������>� .
The above method for the estimation of the numerical range of

`Xacb'd
can be considered

reliable when
��aE`�d

is a regular closed set, i.e., when it coincides with the closure of its
interior, and when the boundary

ª ��aE`�d
is smooth. If

��ac`�d
is not a regular closed set and/orª ��aE`�d

contains non-differentiable points, then our algorithm may become less satisfactory
(locally), as one can see in the next example.
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FIG. 4.4. A numerical range with line segments.

EXAMPLE 4.3. The boundary of the numerical range of the quadratic matrix polynomial

` � a�b(dNe�ghb ® j
�� |

i
x

�
i

� x
x x |

��
b�j

�� | � |� x x
| x �

��

(with Hermitian coefficients) is accurately sketched in the left part of Figure 4.4 by an al-
gorithm described in [7]. In the right part of the same figure, choosing � e�a��$#1} �{z � }%�@d _a��

i
� }%�Jz

i
#�d

and its grid ��� � ®haEx1} x #�d�zB��aE` � d is approximated by Algorithms 1 and 2 (the
number of disks is 8356). In both parts of the figure, the eigenvalues of

` � acb'd are marked
with asterisks, and we remark that the non-real part of the boundary of

��aE` � d intersects
the real axis orthogonally [7, Theorem 5.2]. Clearly, the existence of real intervals and non-
differentiable points on the boundary

ª ��aE` � d affects the accuracy of the methodology.
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5. The case
x � � � |

. In this section, we assume that
x � � � |

. In [9], Li and
Nakazato describe an algorithm for drawing the � -numerical range of an ^9_ ^ complex
matrix

k
. Their method is based on the construction of the (convex) surface of the Davis-

Wielandt shell of
k

, that is,

���3aEk�dNe��haE� � kF�-z � � k � kB�'dLt 6�_ � � �3t 6 \ z{� � �*e | � z
and the relation

� � ack7dNe � � � � �') z�� a�|I� � ® dqa��f� ¤ ) ¤ ® d � � a ) z��(d�tCª ���3aEk�d��Pz
(5.1)

and can be used for the calculation of the inner � -numerical radius §  ��aEk�d and for verifying
whether the origin belongs to � �@aEk�d or not.
Algorithm 3
Step I Construct a grid on the unit sphere in

� �
using spherical coordinates

a
	+¨v©
�

�� 	��Tz�	 ¨�©
�
	+¨v©��-z ��� 	

�
d

with �
e �� z � �� z~}q}~}�z a ���Y|=d �� z �

and
��e �

�
z � �
�
zq}~}q}qz a � � �9|
d �

�
z � �

for some positive integers
�

and � .
Step II For every choice of

a�	 ¨�©
�
�� 	��-z�	+¨v©

�
	+¨�©��-z �� 	

�
d;z

repeat the following:
(a) compute the largest eigenvalue

b #&),*Ja ��a � z�� d d
of the Hermitian matrix��a � z�� dNe a
	+¨�©

�
�� 	��'d 	 kYjlk �� 
 jKa
	+¨v©

�
	+¨�©��'d 	 k � k ��

i 
 jKa ��� 	
�
dqaEk � k�d;z

a corresponding unit eigenvector � � � � t 6 \ and the scalars

) a
�
z��'dXe � �� � � k � � � � and

�Ta
�
z�� dNe � �� � � k � k � � � � z

(b) consider the closed circular disk

�3a
�
z�� dNe � � �') a

�
z�� d�z�� a�|I� � ® d a��-a

�
z��'dU��¤ ) a

�
z�� d~¤ ® d � z

and notice that if
¤ ) a
�
z�� dq¤ ® « n>m � �� ��� �Ta

�
z�� d0��¤ ) a

�
z�� d~¤ ®�� z

then the origin
belongs to � � ack7d .

Step III By (5.1), the union � � � � �3a
�
z�� d

is an approximation of � � ack7d . If
x (t

� � � � �3a
�
z�� d;z

then we say that
x (t � � ack7d and

§  ��ack7d��e ¡f¨�©� � � � � ¤ ) a
�
z�� dq¤M��� a�|I� � ® d a �Ta

�
z�� d � ¤ ) a

�
z�� dq¤ ® d � }

If
`Xacb'd

is a monic matrix polynomial as in (1.1) and
x � � ® � � n « |@z then it is known

that
�V� � aE`�d ���V� � aE`�d [15, Theorem 10]. This result is confirmed by comparing Figure

4.1 with the figure in the following example.
EXAMPLE 5.1. Recall the matrix polynomial

` n acb'd in Example 4.1. In the left part
of Figure 5.1, the roots of a few thousand (randomly chosen) polynomials of the form
�1� `Xa�b(d���aM�Tz � t 6

® z{� � �Ye �1��� e�|�z �1� �Yeyx1} " d are plotted. Observe the gaps around
two eigenvalues of

` n acb'd (marked with ‘+’) and that
�Vr ! ! ac` n d appears to lie in the open
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FIG. 5.1. The ��� � -numerical range of � & �?�@� .

square � e a �$#{z #�d _ a�� i
#1z

i
#�d

. In the right part of Figure 5.1, using Algorithms 1 and
3, we sketch an approximation of the boundary of

�"r ! ! aE` n d by drawing 638 open disks
� a ¥Uz�� � d � � � �wr ! ! aE` n d with centers in ��� � ®haEx1} x���d and radius

� � � x1} x��
. It is easy to

verify that
�wr ! ! ac` n d is connected with smooth boundary and contains the numerical range��aE` n d in Figure 4.1.

Algorithm 1 is simple and robust, but it is also expensive (even for medium sized matrix
polynomials) because of the required computations in Step III (b). Furthermore, Algorithm
2 is based on polar rotations (two dimensional) rather than spherical rotations (three dimen-
sional), which are required by Algorithm 3. Consequently, the cost of Algorithm 3 is much
higher than the cost of Algorithm 2. So, the problem of the design of less expensive algo-
rithms for the computation of the inner � -numerical radius of a general square matrix is still
challenging.

REFERENCES

[1] S.-H. CHENG AND N. HIGHAM, The nearest definite pair for the Hermitian generalized eigenvalue problem,
Linear Algebra Appl., 302/303 (1999), pp. 63-76.

[2] M.-T. CHIEN, H. NAKAZATO AND P. PSARRAKOS, Point equation of the boundary of the numerical range of
a matrix polynomial, Linear Algebra Appl., 347 (2002), pp. 205-217.

[3] M.-T. CHIEN, H. NAKAZATO AND P. PSARRAKOS, On the � -numerical range of matrices and matrix poly-
nomials, preprint (2002).

[4] R.A. HORN AND C.R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[5] I. GOHBERG, P. LANCASTER AND L. RODMAN, Matrix Polynomials, Academic Press, New York, 1982.
[6] P. LANCASTER AND P. PSARRAKOS, Normal and seminormal eigenvalues of matrix functions, Integral Equa-

tions Operator Theory, 41 (2001), pp. 331-342.
[7] P. LANCASTER AND P. PSARRAKOS, The numerical range of selfadjoint quadratic matrix polynomials, SIAM

J. Matrix Anal. Appl., 23 (2001/02), pp. 615-631.
[8] C.-K. LI, P. METHA AND L. RODMAN, A generalized numerical range: a range of a constrained sesquilinear

form, Linear and Multilinear Algebra, 37 (1994), pp. 25-49.
[9] C.-K. LI AND H. NAKAZATO, Some results on the � -numerical ranges, Linear and Multilinear Algebra, 43

(1998), pp. 385-410.
[10] C.-K. LI AND L. RODMAN, Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl., 15 (1994),

pp. 1256-1265.
[11] A.S. MARKUS, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monogr.,

71, Amer. Math. Soc., Providence, RI, 1988.
[12] J. MAROULAS AND P. PSARRAKOS, The boundary of numerical range of matrix polynomials, Linear Algebra

Appl., 267 (1997), pp. 101-111.
[13] J. MAROULAS AND P. PSARRAKOS, On factorization of matrix polynomials, Linear Algebra Appl., 304

(2000), pp. 131-139.



ETNA
Kent State University 
etna@mcs.kent.edu

10 On the estimation of the � -numerical range of monic matrix polynomials

[14] P. PSARRAKOS AND P. VLAMOS, The � -numerical range of matrix polynomials, Linear and Multilinear Al-
gebra, 47 (2000), pp. 1-9.

[15] P. PSARRAKOS, The � -numerical range of matrix polynomials II, Bull. Greek Math. Soc., 45 (2001), pp. 3-15.
[16] P. PSARRAKOS, Numerical range of linear pencils, Linear Algebra Appl., 317 (2000), pp. 127-141.
[17] P. PSARRAKOS, Definite triples of Hermitian matrices and matrix polynomials, J. Comput. Appl. Math., 151

(2003), pp. 39-58.
[18] P. PSARRAKOS AND M. TSATSOMEROS,On the stability radius of matrix polynomials, Linear and Multilinear

Algebra, 50 (2002), pp. 151-165.
[19] A.I.G. VARDULAKIS, Linear Multivariable Control, John Willey & Sons Ltd, Chichester, 1991.


