ON THE ESTIMATION OF THE Q-NUMERICAL RANGE OF MONIC MATRIX POLYNOMIALS*

PANAYIOTIS J. PSARRAKOS ${ }^{\dagger}$

Abstract

For a given $q \in[0,1]$, the q-numerical range of an $n \times n$ matrix polynomial $P(\lambda)=I \lambda^{m}+$ $A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0}$ is defined by $W_{q}(P)=\left\{\lambda \in \mathbb{C}: y^{*} P(\lambda) x=0, x, y \in \mathbb{C}^{n}, x^{*} x=y^{*} y=\right.$ $\left.1, y^{*} x=q\right\}$. In this paper, an inclusion-exclusion methodology for the estimation of $W_{q}(P)$ is proposed. Our approach is based on i) the discretization of a region Ω that contains $W_{q}(P)$, and ii) the construction of an open circular disk, which does not intersect $W_{q}(P)$, centered at every grid point $\mu \in \Omega \backslash W_{q}(P)$. For the cases $q=1$ and $0<q<1$, an important difference arises in one of the steps of the algorithm. Thus, these two cases are discussed separately.

Key words. matrix polynomial, eigenvalue, q-numerical range, boundary, inner q-numerical radius, DavisWielandt shell.

AMS subject classifications. 15A22, 15A60, 65D18, 65F30, 65F35.

1. Introduction and definitions. Let \mathcal{M}_{n} be the algebra of all $n \times n$ complex matrices, and suppose that

$$
\begin{equation*}
P(\lambda)=I \lambda^{m}+A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0} \tag{1.1}
\end{equation*}
$$

is an $n \times n$ monic matrix polynomial, where $A_{j} \in \mathcal{M}_{n}(j=0,1, \ldots, m-1)$ and λ is a complex variable. One encounters matrix polynomials for instance when studying systems of ordinary differential equations or difference equations, with constant coefficients. The suggested references are $[5,11,19]$.

For a given $q \in[0,1]$, the q-numerical range of $P(\lambda)$ in (1.1) is defined by [14, 15]

$$
\begin{equation*}
W_{q}(P)=\left\{\lambda \in \mathbb{C}: y^{*} P(\lambda) x=0, x, y \in \mathbb{C}^{n}, x^{*} x=y^{*} y=1, y^{*} x=q\right\} \tag{1.2}
\end{equation*}
$$

Evidently, $W_{q}(P)$ is always closed and contains the spectrum of $P(\lambda)$, that is, the set of all eigenvalues of $P(\lambda), \sigma(P)=\{\lambda \in \mathbb{C}: \operatorname{det} P(\lambda)=0\}$. For $q=1$, we have the classical numerical range of $P(\lambda)$ [10, 12], namely,

$$
W(P) \equiv W_{1}(P)=\left\{\lambda \in \mathbb{C}: x^{*} P(\lambda) x=0, x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

If $q \in(0,1]$ and $P(\lambda)=I \lambda-q A$ for some $A \in \mathcal{M}_{n}$, then $W_{q}(P)$ coincides with the q-numerical range of $A, F_{q}(A)=\left\{y^{*} A x: x, y \in \mathbb{C}^{n}, x^{*} x=y^{*} y=1, y^{*} x=q\right\}$. For $q=1$, the numerical range of A is $F(A) \equiv F_{1}(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}$ [4]. Moreover, the (outer) q-numerical radius and the inner q-numerical radius of A are defined by

$$
r_{q}(A)=\max \left\{|\mu|: \mu \in F_{q}(A)\right\} \quad \text { and } \quad \hat{r}_{q}(A)=\min \left\{|\mu|: \mu \in \partial F_{q}(A)\right\}
$$

respectively. Note also that $r_{q}(A) \leq\|A\|_{2}$ for every $q \in[0,1]$ [8], where $\|\cdot\|_{2}$ denotes the norm induced by the standard inner product.

During the last decade, the numerical range $W(P)$ has attracted attention, and several results have been obtained (see, e.g., $[2,6,7,10,12,13,16,18]$). These results are helpful

[^0]in investigating and understanding matrix polynomials, and some of them have been generalized to the case of the q-numerical range [3, 14, 15]. Furthermore, applications of the numerical range of matrix polynomials in spectral analysis, factorization and stability of matrix polynomials can be found in $[6,13,18]$, respectively. It is easy to see that if $q=0$, then $W_{q}(P) \equiv \mathbb{C}$. Hence, in the remainder of this note, we assume that $0<q \leq 1$. As a consequence, since the leading coefficient of $P(\lambda)$ in (1.1) is the identity matrix, the q-numerical range $W_{q}(P)$ in (1.2) is compact and has no more than m connected components [10,14].

Algorithms for plotting the boundary of the numerical range of the matrix polynomials $A \lambda^{2 m_{1}+m_{2}}+B \lambda^{m_{1}+m_{2}}+C \lambda^{m_{2}}$ and $A \lambda^{m_{1}+m_{2}}+(B+\mathrm{i} C)^{m_{2}}$, where the matrices A, B, C are Hermitian, can be found in $[7,16,17]$. Moreover, the point equation of the boundary of the numerical range of a general matrix polynomial is studied in [2]. The numerical approximation of the q-numerical range of the monic matrix polynomial $P(\lambda)$ in (1.1) is still an open and challenging problem. The "brute force" approach would be to plot the roots of the polynomial $y^{*} P(\lambda) x$ for a large number of randomly chosen unit vectors $x, y \in \mathbb{C}^{n}$ satisfying $y^{*} x=q$. But that would be too costly, and it would probably not accurately depict the boundary of $W_{q}(P)$. In this paper, a methodology for the estimation of the q-numerical range $W_{q}(P)$ is proposed. This method is the first method for drawing $W_{q}(P)$ besides the application of the definition, and can also be used for the approximation of the boundary $\partial W_{q}(P)$. In the next section, we describe the general inclusion-exclusion algorithm, which is based on the boundedness of $W_{q}(P)$ and a result on open disks that do not intersect $W_{q}(P)$ [12, 14], and requires the computation of the inner q-numerical radius of the (fixed) matrix $P(\mu)$ for several $\mu \in \mathbb{C} \backslash W_{q}(P)$. In Sections 4 and 5, algorithms for the calculation of the inner q-numerical radius of a square complex matrix for the cases $q=1$ and $0<q<1$, respectively, are given. Furthermore, numerical examples are presented to illustrate our results. For all the experiments, the computations were performed in MATLAB 4.2 on a PC Celeron 600.
2. The general algorithm. Consider an $n \times n$ matrix polynomial $P(\lambda)=I \lambda^{m}+$ $A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0}$ as in (1.1) and a real $q \in(0,1]$. Let μ be a complex number, which does not belong to the q-numerical range of $P(\lambda)$, i.e., μ lies in the open set $\mathbb{C} \backslash W_{q}(P)$. Then, we can construct an open circular disk $S\left(\mu, \rho_{\mu}\right)$ with center at μ and radius $\rho_{\mu}<1$ such that $S\left(\mu, \rho_{\mu}\right) \cap W_{q}(P)=\emptyset$. The closure of $S\left(\mu, \rho_{\mu}\right)$ is denoted by $\bar{S}\left(\mu, \rho_{\mu}\right)$.

THEOREM 2.1. Suppose $P(\lambda)=I \lambda^{m}+A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0}$ and $q \in(0,1]$, and let $\mu \in \mathbb{C} \backslash W_{q}(P)$. Then the open disk $S\left(\mu, \rho_{\mu}\right)$ with radius

$$
\rho_{\mu}=\frac{\hat{r}_{q}(P(\mu))}{\hat{r}_{q}(P(\mu))+\max _{j=1, \ldots, m}\left\|\frac{1}{j!} P^{(j)}(\mu)\right\|_{2}}
$$

does not intersect the q-numerical range $W_{q}(P)$.
Proof. Consider the matrix polynomial

$$
P_{\mu}(\lambda)=P(\lambda+\mu)=I \lambda^{m}+B_{m-1} \lambda^{m-1}+\cdots+B_{1} \lambda+B_{0}
$$

and denote $B_{m}=I$. It is well-known that $W_{q}\left(P_{\mu}\right)=W_{q}(P)-\mu[10,14]$. Thus, the origin does not belong to $W_{q}\left(P_{\mu}\right)$, or equivalently, $0 \notin F_{q}\left(B_{0}\right)$ ($\equiv F_{q}(P(\mu))$). By [14, Theorem 1.4] (see also [12, Theorem 3.1]), for every $z \in W_{q}\left(P_{\mu}\right)$, we have that

$$
\frac{\hat{r}_{q}\left(B_{0}\right)}{\hat{r}_{q}\left(B_{0}\right)+\max _{j=1, \ldots, m} r_{q}\left(B_{j}\right)} \leq|z| .
$$

Since $r_{q}\left(B_{j}\right) \leq\left\|B_{j}\right\|_{2}(j=1,2, \ldots, m)$, it follows that

$$
\frac{\hat{r}_{q}\left(B_{0}\right)}{\hat{r}_{q}\left(B_{0}\right)+\max _{j=1, \ldots, m}\left\|B_{j}\right\|_{2}} \leq|z|
$$

Hence, $S\left(0, \rho_{\mu}\right) \cap W_{q}\left(P_{\mu}\right)=\emptyset$, or equivalently, $S\left(\mu, \rho_{\mu}\right) \cap W_{q}(P)=\emptyset$. Since the coefficients of $P_{\mu}(\lambda)=P(\lambda+\mu)$ are given by

$$
B_{j}=\frac{1}{j!} P^{(j)}(\mu) ; \quad j=0,1, \ldots, m
$$

the proof is complete.
The q-numerical range $W_{q}(P)$ is bounded, and thus, we can always find a bounded region Ω in the complex plane that contains $W_{q}(P)$. For example, it is known that [14, Theorem 1.4]

$$
\begin{equation*}
W_{q}(P) \subseteq \bar{S}\left(0,1+\max _{j=0, \ldots, m-1} \frac{r_{q}\left(A_{j}\right)}{q}\right) \subseteq \bar{S}\left(0,1+\max _{j=0, \ldots, m-1} \frac{\left\|A_{j}\right\|_{2}}{q}\right) \tag{2.1}
\end{equation*}
$$

Then we can approximate $W_{q}(P)$ by plotting its complement with respect to Ω.
Algorithm 1 (The general inclusion-exclusion procedure)
Step I Obtain an open bounded region $\Omega \subset \mathbb{C}$ such that $W_{q}(P) \subset \Omega$.
Step II Construct a grid \mathcal{G}_{Ω} of Ω.
Step III For every grid point $\mu \in \mathcal{G}_{\Omega}$, repeat the following:
(a) check if $\mu \notin W_{q}(P)$, or equivalently, if $0 \notin F_{q}(P(\mu))$,
(b) if $0 \notin F_{q}(P(\mu))$, then compute the inner q-numerical radius $\hat{r}_{q}(P(\mu))$ and the matrices

$$
B_{j}=\frac{1}{j!} P^{(j)}(\mu) ; \quad j=0,1, \ldots, m
$$

(c) construct the open circular disk $S\left(\mu, \rho_{\mu}\right) \subset \mathbb{C} \backslash W_{q}(P)$ with radius

$$
\rho_{\mu}=\frac{\hat{r}_{q}\left(B_{0}\right)}{\hat{r}_{q}\left(B_{0}\right)+\max _{j=1, \ldots, m}\left\|B_{j}\right\|_{2}} .
$$

Step IV The set

is an approximation of $W_{q}(P)$ and always contains $W_{q}(P)$.
An important feature of the above methodology is that it does not depend strongly on the degree m of $P(\lambda)$, which appears only in the computation of the matrices $B_{j}(j=$ $0,1, \ldots, m)$. Note also that the most expensive part of Algorithm 1 is the calculation of the inner q-numerical radius $\hat{r}_{q}(P(\mu))$ in Step III (b). This step will be further discussed in Sections 4 and 5.

The two inclusion regions given by (2.1) are not always satisfactory, since they are centered at the origin. By a simple MATLAB code, one can plot the roots of a few polynomials of the form $y^{*} P(\lambda) x$, where $x, y \in \mathbb{C}^{n}$ are unit vectors satisfying $y^{*} x=q$. In this way, a first approach of an open rectangle $\Omega=\left(u_{\min }, u_{\max }\right) \times\left(\mathrm{i} v_{\min }, \mathrm{i} v_{\max }\right)$
$\left(u_{\min }, u_{\max }, v_{\min }, v_{\max } \in \mathbb{R}\right)$, which contains $W_{q}(P)$, is obtained. After choosing Ω, we can construct either a constant or a variable grid. In our experiments, we use two grids, where we move rightwards on each grid line and upwards on each grid column. The first grid, denoted by $\mathcal{G}_{\Omega, 1}(\xi)$, is formed by a partition of the intervals $\left(u_{\min }, u_{\max }\right)$ and $\left(v_{\min }, v_{\max }\right)$ with constant length ξ, where all grid points within the disks generated by Step III (c) are excluded. The second one, denoted by $\mathcal{G}_{\Omega, 2}(\xi)$, is formed by a partition of the interval $\left(u_{\min }, u_{\max }\right)$ with constant length ξ and a partition of the interval $\left(v_{\min }, v_{\max }\right)$ with variable length $\max \left\{\xi, \rho_{\mu}\right\}$, where ρ_{μ} is the radius of each disk generated by Step III (c).
3. Approximating the boundary. Let $P(\lambda)$ be an $n \times n$ matrix polynomial as in (1.1) and let $q \in(0,1]$. For a $\mu \in \mathbb{C} \backslash W_{q}(P)$, recall the open disk $S\left(\mu, \rho_{\mu}\right)$ in Theorem 2.1 and consider a positive real $M_{\mu} \geq \max _{j=1, \ldots, m}\left\|\frac{1}{j!} P^{(j)}(\mu)\right\|_{2}$. Then from the relation

$$
\frac{\hat{r}_{q}(P(\mu))}{\hat{r}_{q}(P(\mu))+M_{\mu}} \leq \rho_{\mu} \leq \frac{\hat{r}_{q}(P(\mu))}{\hat{r}_{q}(P(\mu))+1}
$$

it follows that

$$
\begin{equation*}
\rho_{\mu}<\hat{r}_{q}(P(\mu)) \leq \frac{\rho_{\mu} M_{\mu}}{1-\rho_{\mu}} \tag{3.1}
\end{equation*}
$$

and it is clear that the radius ρ_{μ} is small if and only if the inner q-numerical radius of $P(\mu)$ is sufficiently small.

Denote now by $d(P, \mu)$ the distance between μ and the compact set $W_{q}(P)$. By Theorem 2.1, this distance is greater than or equal to ρ_{μ}. Moreover, we have the following result.

THEOREM 3.1. For an $n \times n$ matrix polynomial $P(\lambda)=I \lambda^{m}+A_{m-1} \lambda^{m-1}+\cdots+$ $A_{1} \lambda+A_{0}$ and $q \in(0,1]$, consider $\mu \in \mathbb{C} \backslash W_{q}(P)$ and the disk $S\left(\mu, \rho_{\mu}\right)$ defined in Theorem 2.1. Suppose that for two unit vectors $x_{0}, y_{0} \in \mathbb{C}^{n}$ such that $y_{0}^{*} x_{0}=q$ and $\left|y_{0}^{*} P(\mu) x_{0}\right|=\hat{r}_{q}(P(\mu))$, we have $y_{0}^{*} P^{(1)}(\mu) x_{0} \neq 0$. Then for sufficiently small ρ_{μ},

$$
d(P, \mu) \leq \frac{2 \rho_{\mu} M_{\mu}}{\left(1-\rho_{\mu}\right)\left|y_{0}^{*} P^{(1)}(\mu) x_{0}\right|}
$$

Proof. Consider the two unit vectors $x_{0}, y_{0} \in \mathbb{C}^{n}$ satisfying

$$
y_{0}^{*} x_{0}=q, \quad\left|y_{0}^{*} P(\mu) x_{0}\right|=\hat{r}_{q}(P(\mu)), \quad \text { and } \quad y_{0}^{*} P^{(1)}(\mu) x_{0} \neq 0
$$

Then there is a real $\delta>0$ such that for any $\lambda \in \bar{S}(\mu, \delta)$,

$$
\begin{align*}
y_{0}^{*} P(\lambda) x_{0} & =y_{0}^{*}\left\{P(\mu)+(\lambda-\mu) P^{(1)}(\mu)+(\lambda-\mu) R(\lambda, \mu)\right\} x_{0} \\
& =y_{0}^{*} P(\mu) x_{0}+(\lambda-\mu)\left(y_{0}^{*} P^{(1)}(\mu) x_{0}+y_{0}^{*} R(\lambda, \mu) x_{0}\right) \tag{3.2}
\end{align*}
$$

where $\|R(\lambda, \mu)\|=o(1)$ as $|\lambda-\mu| \rightarrow 0$. Since $y_{0}^{*} P^{(1)}(\mu) x_{0} \neq 0, \delta$ can be chosen so small that $\left|y_{0}^{*} P^{(1)}(\mu) x_{0}\right| \geq 2\left|y_{0}^{*} R(\lambda, \mu) x_{0}\right|$ for every $\lambda \in \bar{S}(\mu, \delta)$. Furthermore, for sufficiently small ρ_{μ}, by (3.1), we can assume that

$$
\hat{r}_{q}(P(\mu)) \leq \delta\left|y_{0}^{*} P^{(1)}(\mu) x_{0}+y_{0}^{*} R(\lambda, \mu) x_{0}\right|
$$

Then, since (3.2) holds for every $\lambda \in \bar{S}(\mu, \delta)$, there exists a $\lambda_{0} \in \bar{S}(\mu, \delta)$ such that $y_{0}^{*} P\left(\lambda_{0}\right) x_{0}=0$, i.e., $\lambda_{0} \in W_{q}(P)$. Thus,

$$
d(P, \mu) \leq\left|\lambda_{0}-\mu\right|=\frac{\hat{r}_{q}(P(\mu))}{\left|y_{0}^{*} P^{(1)}(\mu) x_{0}+y_{0}^{*} R\left(\lambda_{0}, \mu\right) x_{0}\right|} \leq \frac{2 \hat{r}_{q}(P(\mu))}{\left|y_{0}^{*} P^{(1)}(\mu) x_{0}\right|}
$$

and the proof is completed by (3.1).
Notice that for any $\mu \notin W_{q}(P)$, the origin does not belong to the q-numerical range of the matrix $P(\mu)$ and there are infinitely many pairs of unit vectors $x_{0}, y_{0} \in \mathbb{C}^{n}$ such that $y_{0}^{*} x_{0}=q$ and $\left|y_{0}^{*} P(\mu) x_{0}\right|=\hat{r}(P(\mu))$. If one of these pairs also satisfies $y_{0}^{*} P^{(1)}(\mu) x_{0} \neq 0$, then Theorem 3.1 and the inequality $d(P, \mu) \geq \rho_{\mu}$ imply that the radius ρ_{μ} is small if and only if the point μ is sufficiently close to the boundary of $W_{q}(P)$. Recall also that the function $\max _{j=1, \ldots, m}\left\|\frac{1}{j!} P^{(j)}(\lambda)\right\|_{2}$ is bounded. Hence, if we choose a sufficiently small $\epsilon>0$, then we can approximate the boundary $\partial W_{q}(P)$ by using Algorithm 1 and plotting the disks $S\left(\mu, \rho_{\mu}\right) \subset \Omega \backslash W_{q}(P)$ with radius $\rho_{\mu}<\epsilon$ (see Examples 4.2 and 5.1 below).
4. The case $q=1$. Let $P(\lambda)=I \lambda^{m}+A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0}$ be an $n \times n$ monic matrix polynomial and let $q=1$. It is clear that for the estimation of the numerical range $W(P)\left(\equiv W_{1}(P)\right)$ via the algorithm in Section 2, a method for the computation of the inner numerical radius of an $n \times n$ complex matrix is needed. By [1, Theorem 2.1] (see also [4, Chapter 1.5]), the inner numerical radius of a matrix $A \in \mathcal{M}_{n}$ is given by

$$
\hat{r}(A) \equiv \hat{r}_{1}(A)=\left|\min _{\theta \in[0,2 \pi]} \lambda_{\max }\left(\frac{e^{\mathrm{i} \theta} A+e^{-\mathrm{i} \theta} A^{*}}{2}\right)\right|
$$

where $\lambda_{\max }(\cdot)$ denotes the maximum eigenvalue of a Hermitian matrix. As a consequence, the following procedure produces $\hat{r}(A)$ and classifies the origin as belonging to $F(A) \equiv$ $F_{1}(A)$ or not.

Algorithm 2

Step I Construct a grid

$$
\left\{\theta=\frac{j \pi}{N}: j=0,1, \ldots, 2 N-1\right\}
$$

of the interval $[0,2 \pi]$ for some positive integer N.
Step II For every choice of θ, compute the largest eigenvalue $\lambda_{\max }(H(\theta))$ of the Hermitian matrix

$$
H(\theta)=\frac{1}{2}\left(e^{\mathrm{i} \theta} A+e^{-\mathrm{i} \theta} A^{*}\right)
$$

Step III Find the minimum of $\lambda_{\max }(H(\theta))$ and the corresponding angle θ_{0}. The absolute value of this minimum is an approximation of the inner numerical radius $\hat{r}(A)$. Moreover, the origin does not belong to the numerical range $F(A)$ if and only if the eigenvalue $\lambda_{\max }\left(H\left(\theta_{0}\right)\right)$ is negative.
The above algorithm can be used for Step III (a),(b) of Algorithm 1. As a consequence, we have a complete methodology for the approximation of the numerical range $W(P)$, which is illustrated in the following examples.

Example 4.1. For the matrix polynomial

$$
P_{1}(\lambda)=I \lambda^{3}+\left[\begin{array}{cc}
-1 & -1 \\
0 & -2
\end{array}\right] \lambda^{2}+\left[\begin{array}{cc}
0 & \mathrm{i} \\
1 & -1
\end{array}\right] \lambda+\left[\begin{array}{ll}
10 & 5 \\
\mathrm{i} 8 & 7
\end{array}\right]
$$

the roots of a few thousand (randomly chosen) polynomials of the form $x^{*} P_{1}(\lambda) x(x \in$ $\mathbb{C}^{2}, x^{*} x=1$) are sketched in the left part of Figure 4.1. Observe that we do not have a clear picture of $W\left(P_{1}\right)$, and that three eigenvalues of $P_{1}(\lambda)$ (marked with ' + ') appear to lie out of $W\left(P_{1}\right)$. Moreover, it seems that $W\left(P_{1}\right)$ lies in the open rectangle $\Omega=(-3,3) \times(-\mathrm{i} 2.5, \mathrm{i} 3)$.

Fig. 4.1. A numerical range with three connected components.

For the grid $\mathcal{G}_{\Omega, 1}(0.05)$, by Algorithms 1 and 2, an approximation of the numerical range $W\left(P_{1}\right)$ is drawn in the right part of the figure. The number of disks is 1076 , and now we can see that $W\left(P_{1}\right)$ has three connected components and contains the spectrum $\sigma\left(P_{1}\right)$ in its interior.

Fig. 4.2. A connected numerical range.

Example 4.2. For the matrix polynomial

$$
P_{2}(\lambda)=I \lambda^{3}+\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right] \lambda^{2}+\left[\begin{array}{cc}
0 & \mathrm{i} \\
1 & -1
\end{array}\right] \lambda+\left[\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right]
$$

the roots of a few thousand (randomly chosen) polynomials of the form $x^{*} P_{2}(\lambda) x(x \in$ $\mathbb{C}^{2}, x^{*} x=1$) are sketched in the left part of Figure 4.2. We have a clear picture only for the left part of $W\left(P_{2}\right)$ and an eigenvalue of $P_{2}(\lambda)$ (marked with '+') appears to lie out of $W\left(P_{2}\right)$. Using our methodology and choosing the grid $\mathcal{G}_{\Omega, 1}(0.05)$ of the inclusion domain $\Omega=(-3,3) \times(-\mathrm{i} 2, \mathrm{i} 2.5)$, an estimation of the numerical range $W\left(P_{2}\right)$ is drawn in the right part of the figure and gives a better visualization of $W\left(P_{2}\right)$. The total number of disks is 3812. With respect to the same grid, in Figure 4.3, we plot exactly the open disks $S\left(\mu, \rho_{\mu}\right) \subset$ $\Omega \backslash W\left(P_{2}\right)$ with radius $\rho_{\mu}<\epsilon$ for $\epsilon=0.08$ (left part) and $\epsilon=0.04$ (right part). In this way, we approach the boundary of $W\left(P_{2}\right)$, confirming Theorem 3.1 and the discussion in the previous section.

FIG. 4.3. Approximating the boundary of $W\left(P_{2}\right)$.

The above method for the estimation of the numerical range of $P(\lambda)$ can be considered reliable when $W(P)$ is a regular closed set, i.e., when it coincides with the closure of its interior, and when the boundary $\partial W(P)$ is smooth. If $W(P)$ is not a regular closed set and/or $\partial W(P)$ contains non-differentiable points, then our algorithm may become less satisfactory (locally), as one can see in the next example.

FIG. 4.4. A numerical range with line segments.

EXAMPLE 4.3. The boundary of the numerical range of the quadratic matrix polynomial

$$
P_{3}(\lambda)=I \lambda^{2}+\left[\begin{array}{ccc}
1 & \mathrm{i} & 0 \\
-\mathrm{i} & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \lambda+\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & 0 \\
1 & 0 & 4
\end{array}\right]
$$

(with Hermitian coefficients) is accurately sketched in the left part of Figure 4.4 by an algorithm described in [7]. In the right part of the same figure, choosing $\Omega=(-3.5,2.5) \times$ $(-\mathrm{i} 2.5, \mathrm{i} 3)$ and its grid $\mathcal{G}_{\Omega, 2}(0.03), W\left(P_{3}\right)$ is approximated by Algorithms 1 and 2 (the number of disks is 8356). In both parts of the figure, the eigenvalues of $P_{3}(\lambda)$ are marked with asterisks, and we remark that the non-real part of the boundary of $W\left(P_{3}\right)$ intersects the real axis orthogonally [7, Theorem 5.2]. Clearly, the existence of real intervals and nondifferentiable points on the boundary $\partial W\left(P_{3}\right)$ affects the accuracy of the methodology.
5. The case $0<q<1$. In this section, we assume that $0<q<1$. In [9], Li and Nakazato describe an algorithm for drawing the q-numerical range of an $n \times n$ complex matrix A. Their method is based on the construction of the (convex) surface of the DavisWielandt shell of A, that is,

$$
W D(A)=\left\{\left(x^{*} A x, x^{*} A^{*} A x\right) \in \mathbb{C} \times \mathbb{R}: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

and the relation

$$
\begin{equation*}
F_{q}(A)=\bigcup\left\{\bar{S}\left(q z, \sqrt{\left(1-q^{2}\right)\left(h-|z|^{2}\right)}\right):(z, h) \in \partial W D(A)\right\} \tag{5.1}
\end{equation*}
$$

and can be used for the calculation of the inner q-numerical radius $\hat{r}_{q}(A)$ and for verifying whether the origin belongs to $F_{q}(A)$ or not.
Algorithm 3
Step I Construct a grid on the unit sphere in \mathbb{R}^{3} using spherical coordinates

$$
(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

with

$$
\theta=\frac{\pi}{N}, \frac{2 \pi}{N}, \ldots, \frac{(N-1) \pi}{N}, \pi \quad \text { and } \quad \phi=\frac{\pi}{S}, \frac{2 \pi}{S}, \ldots, \frac{(2 S-1) \pi}{S}, 2 \pi
$$

for some positive integers N and S.
Step II For every choice of $(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, repeat the following:
(a) compute the largest eigenvalue $\lambda_{\max }(H(\theta, \phi))$ of the Hermitian matrix

$$
H(\theta, \phi)=(\sin \theta \cos \phi)\left(\frac{A+A^{*}}{2}\right)+(\sin \theta \sin \phi)\left(\frac{A-A^{*}}{2 \mathrm{i}}\right)+(\cos \theta)\left(A^{*} A\right)
$$

a corresponding unit eigenvector $y_{\theta, \phi} \in \mathbb{C}^{n}$ and the scalars

$$
z(\theta, \phi)=y_{\theta, \phi}^{*} A y_{\theta, \phi} \quad \text { and } \quad h(\theta, \phi)=y_{\theta, \phi}^{*} A^{*} A y_{\theta, \phi}
$$

(b) consider the closed circular disk

$$
D(\theta, \phi)=\bar{S}\left(q z(\theta, \phi), \sqrt{\left(1-q^{2}\right)\left(h(\theta, \phi)-|z(\theta, \phi)|^{2}\right)}\right)
$$

and notice that if $|z(\theta, \phi)|^{2} \leq \frac{1-q^{2}}{q^{2}}\left(h(\theta, \phi)-|z(\theta, \phi)|^{2}\right)$, then the origin belongs to $F_{q}(A)$.
Step III By (5.1), the union $\bigcup_{\theta, \phi} D(\theta, \phi)$ is an approximation of $F_{q}(A)$. If $0 \notin$ $\bigcup_{\theta, \phi} D(\theta, \phi)$, then we say that $0 \notin F_{q}(A)$ and

$$
\hat{r}_{q}(A) \cong \min _{\theta, \phi}\left\{q|z(\theta, \phi)|-\sqrt{\left(1-q^{2}\right)\left(h(\theta, \phi)-|z(\theta, \phi)|^{2}\right)}\right\}
$$

If $P(\lambda)$ is a monic matrix polynomial as in (1.1) and $0<q_{2}<q_{1} \leq 1$, then it is known that $W_{q_{1}}(P) \subseteq W_{q_{2}}(P)$ [15, Theorem 10]. This result is confirmed by comparing Figure 4.1 with the figure in the following example.

Example 5.1. Recall the matrix polynomial $P_{1}(\lambda)$ in Example 4.1. In the left part of Figure 5.1, the roots of a few thousand (randomly chosen) polynomials of the form $y^{*} P(\lambda) x\left(x, y \in \mathbb{C}^{2}, x^{*} x=y^{*} y=1, y^{*} x=0.7\right)$ are plotted. Observe the gaps around two eigenvalues of $P_{1}(\lambda)$ (marked with ' + ') and that $W_{0.7}\left(P_{1}\right)$ appears to lie in the open

FIG. 5.1. The 0.7 -numerical range of $P_{1}(\lambda)$.
square $\Omega=(-3,3) \times(-\mathrm{i} 3, \mathrm{i} 3)$. In the right part of Figure 5.1, using Algorithms 1 and 3, we sketch an approximation of the boundary of $W_{0.7}\left(P_{1}\right)$ by drawing 638 open disks $S\left(\mu, \rho_{\mu}\right) \subset \Omega \backslash W_{0.7}\left(P_{1}\right)$ with centers in $\mathcal{G}_{\Omega, 2}(0.06)$ and radius $\rho_{\mu}<0.04$. It is easy to verify that $W_{0.7}\left(P_{1}\right)$ is connected with smooth boundary and contains the numerical range $W\left(P_{1}\right)$ in Figure 4.1.

Algorithm 1 is simple and robust, but it is also expensive (even for medium sized matrix polynomials) because of the required computations in Step III (b). Furthermore, Algorithm 2 is based on polar rotations (two dimensional) rather than spherical rotations (three dimensional), which are required by Algorithm 3. Consequently, the cost of Algorithm 3 is much higher than the cost of Algorithm 2. So, the problem of the design of less expensive algorithms for the computation of the inner q-numerical radius of a general square matrix is still challenging.

REFERENCES

[1] S.-H. Cheng and N. Higham, The nearest definite pair for the Hermitian generalized eigenvalue problem, Linear Algebra Appl., 302/303 (1999), pp. 63-76.
[2] M.-T. Chien, H. Nakazato and P. Psarrakos, Point equation of the boundary of the numerical range of a matrix polynomial, Linear Algebra Appl., 347 (2002), pp. 205-217.
[3] M.-T. Chien, H. Nakazato and P. Psarrakos, On the q-numerical range of matrices and matrix polynomials, preprint (2002).
[4] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[5] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
[6] P. LANCASTER AND P. PsARRAKOS, Normal and seminormal eigenvalues of matrix functions, Integral Equations Operator Theory, 41 (2001), pp. 331-342.
[7] P. LANCASTER AND P. PSARRAKOS, The numerical range of selfadjoint quadratic matrix polynomials, SIAM J. Matrix Anal. Appl., 23 (2001/02), pp. 615-631.
[8] C.-K. Li, P. Metha and L. Rodman, A generalized numerical range: a range of a constrained sesquilinear form, Linear and Multilinear Algebra, 37 (1994), pp. 25-49.
[9] C.-K. Li and H. Nakazato, Some results on the q-numerical ranges, Linear and Multilinear Algebra, 43 (1998), pp. 385-410.
[10] C.-K. Li and L. Rodman, Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1256-1265.
[11] A.S. MARKUS, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988.
[12] J. Maroulas and P. Psarrakos, The boundary of numerical range of matrix polynomials, Linear Algebra Appl., 267 (1997), pp. 101-111.
[13] J. Maroulas and P. Psarrakos, On factorization of matrix polynomials, Linear Algebra Appl., 304 (2000), pp. 131-139.
[14] P. Psarrakos and P. Vlamos, The q-numerical range of matrix polynomials, Linear and Multilinear Algebra, 47 (2000), pp. 1-9.
[15] P. Psarrakos, The q-numerical range of matrix polynomials II, Bull. Greek Math. Soc., 45 (2001), pp. 3-15.
[16] P. PsARRAKOS, Numerical range of linear pencils, Linear Algebra Appl., 317 (2000), pp. 127-141.
[17] P. Psarrakos, Definite triples of Hermitian matrices and matrix polynomials, J. Comput. Appl. Math., 151 (2003), pp. 39-58.
[18] P. Psarrakos and M. Tsatsomeros, On the stability radius of matrix polynomials, Linear and Multilinear Algebra, 50 (2002), pp. 151-165.
[19] A.I.G. Vardulakis, Linear Multivariable Control, John Willey \& Sons Ltd, Chichester, 1991.

[^0]: *Received February 21, 2003. Accepted for publication June 30, 2003. Recommended by D. Szyld.
 \dagger Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece. E-mail: ppsarr@math.ntua.gr

